Automatic Multiplicative Sequences
(and automatic semigroups)

Jakub Konieczny

Hebrew University of Jerusalem
Period-doubling sequence $a: \mathbb{N} \to \{+1, -1\}$

\[+\text{---------+--------+----------}+\ldots\]

There are several ways to define this sequence:

1. **Explicit formula:**
 \[a(n) = (-1)^{\nu_2(n)}\]
 \[\rightarrow \nu_2(n) = \nu \iff n = 2^\nu (2n_0 + 1)\]

2. **Recurrence:**
 \[a(2n + 1) = +1, \quad a(2n) = -a(n)\]

3. **Substitution:**
 \[+ \mapsto +-, \quad - \mapsto ++\]
 \[\rightarrow + \mapsto +- \mapsto +++ \mapsto +++++ \rightarrow ++++++ \ldots\]

4. **Automaton:**

 ![Automaton Diagram]

 This sequence also happens to be completely multiplicative:
 \[a(nm) = a(n)a(m)\].

Question for today: What other automatic multiplicative sequences are there?

\[\rightarrow \text{Multiplicative sequence: } a(nm) = a(n)a(m) \text{ if } n \perp m.\]
Period-doubling sequence $a: \mathbb{N} \to \{+1, -1\}$

There are several ways to define this sequence:

1. Explicit formula: $a(n) = (-1)^{\nu_2(n)}$
 $$\rightarrow \nu_2(n) = \nu \Leftrightarrow n = 2^\nu (2n_0 + 1)$$

2. Recurrence: $a(2n + 1) = +1$, $a(2n) = -a(n)$

3. Substitution: $+ \mapsto +1$, $- \mapsto 1$
 $\Rightarrow + \mapsto +1 \mapsto +1 \mapsto +1 \mapsto \ldots$

4. Automaton:

![Diagram of an automaton]

This sequence also happens to be completely multiplicative: $a(nm) = a(n)a(m)$.

Question for today: What other automatic multiplicative sequences are there?
Period-doubling sequence $a: \mathbb{N} \to \{+1, -1\}$

There are several ways to define this sequence:

1. Explicit formula: $a(n) = (-1)^{\nu_2(n)}$

 $\nu_2(n) = \nu \iff n = 2^\nu (2n_0 + 1)$

2. Recurrence: $a(2n + 1) = +1$, $a(2n) = -a(n)$

3. Substitution: $+ \mapsto +-, - \mapsto ++$

 $+ \mapsto +- \mapsto +++++ \mapsto +++++++ \mapsto ++++++++ \mapsto \ldots$

4. Automaton:

 ![Automaton Diagram]

This sequence also happens to be completely multiplicative: $a(nm) = a(n)a(m)$.

Question for today: What other automatic multiplicative sequences are there?

\longrightarrow **Multiplicative sequence**: $a(nm) = a(n)a(m)$ if $n \perp m$.
Period-doubling sequence \(a: \mathbb{N} \to \{+1, -1\} \)

\[+-+-+-++---+++++-++-+++-... \]

There are several ways to define this sequence:

1. **Explicit formula:** \(a(n) = (-1)^{\nu_2(n)} \)
 \[\nu_2(n) = \nu \iff n = 2^\nu (2n_0 + 1) \]

2. **Recurrence:** \(a(2n + 1) = +1, \quad a(2n) = -a(n) \)

3. **Substitution:** \(+ \mapsto –, \quad – \mapsto + \)
 \[+ \mapsto + - \mapsto + - ++ \mapsto + + + + + + + + + + + + + \mapsto + + + + + + + + + + + + + + \]

4. **Automaton:**

 ![Automaton diagram]

This sequence also happens to be completely multiplicative: \(a(nm) = a(n)a(m) \).

Question for today: What other automatic multiplicative sequences are there?

\[\longrightarrow \text{Multiplicative sequence: } a(nm) = a(n)a(m) \text{ if } n \perp m. \]
Period-doubling sequence $a: \mathbb{N} \rightarrow \{+1, -1\}$

There are several ways to define this sequence:

1. Explicit formula: $a(n) = (-1)^{\nu_2(n)}$ \(\text{\rightarrow } \nu_2(n) = \nu \Leftrightarrow n = 2^\nu (2n_0 + 1)\)

2. Recurrence: $a(2n + 1) = +1$, $a(2n) = -a(n)$

3. Substitution: $+$ \mapsto $+-$, $-$ \mapsto $++$

 $+$ \mapsto $+-+-$ \mapsto $+---$ \mapsto $++++++++---+++---\ldots$

4. Automaton:

This sequence also happens to be completely multiplicative: $a(nm) = a(n)a(m)$.

Question for today: What other automatic multiplicative sequences are there?

\(\text{\rightarrow } \text{Multiplicative sequence: } a(nm) = a(n)a(m) \text{ if } n \perp m.\)
Period-doubling sequence $a: \mathbb{N} \to \{+1, -1\}$

There are several ways to define this sequence:

1. **Explicit formula:** $a(n) = (-1)^{\nu_2(n)} \quad \rightarrow \nu_2(n) = \nu \Leftrightarrow n = 2^{\nu}(2n_0 + 1)$

2. **Recurrence:** $a(2n + 1) = +1$, \quad $a(2n) = -a(n)$

3. **Substitution:** $+ \mapsto +-, - \mapsto ++$
 \quad $+ \mapsto +- \mapsto +++++-+ \mapsto +++++-- \mapsto +++++++-- \mapsto ++++++++-- \mapsto ++++++++-++-- \mapsto ++++++++-+++-++...$

4. **Automaton:**

This sequence also happens to be completely multiplicative: $a(nm) = a(n)a(m)$.

Question for today: What other automatic multiplicative sequences are there?

\rightarrow **Multiplicative sequence:** $a(nm) = a(n)a(m)$ if $n \perp m$.
Period-doubling sequence \(a : \mathbb{N} \to \{+1, -1\} \)

\[+-+-+-+-+-+-+-+-+ -+ +... \]

There are several ways to define this sequence:

1. Explicit formula: \(a(n) = (-1)^{\nu_2(n)} \quad \rightarrow \nu_2(n) = \nu \iff n = 2^\nu (2n_0 + 1) \)

2. Recurrence: \(a(2n + 1) = +1, \quad a(2n) = -a(n) \)

3. Substitution: \(+ \mapsto +- , - \mapsto ++ \)

 \[+ \mapsto + - \mapsto + + + + \mapsto + + + + + + + + + + + + + + + + + ... \]

4. Automaton:

![Automaton Diagram]

This sequence also happens to be completely multiplicative: \(a(nm) = a(n)a(m) \).

Question for today: What other automatic multiplicative sequences are there?

\[\rightarrow \text{Multiplicative sequence: } a(nm) = a(n)a(m) \text{ if } n \perp m. \]
Period-doubling sequence $a : \mathbb{N} \rightarrow \{+1, -1\}$

```
```

There are several ways to define this sequence:

1. Explicit formula: $a(n) = (-1)^{\nu_2(n)}$ \quad $\nu_2(n) = \nu \iff n = 2^\nu (2n_0 + 1)$

2. Recurrence: $a(2n + 1) = +1$, \quad $a(2n) = -a(n)$

3. Substitution: $+ \mapsto +-, \quad - \mapsto ++$

\[\begin{array}{c}
+ \mapsto + -, \quad - \mapsto ++ \\
+ \mapsto + -, \quad - \mapsto ++ \\
+ \mapsto + -, \quad - \mapsto ++ \\
+ \mapsto + -, \quad - \mapsto ++ \\
\end{array}\]

4. Automaton:

This sequence also happens to be completely multiplicative: $a(nm) = a(n)a(m)$.

Question for today: What other automatic multiplicative sequences are there?

\[\rightarrow\text{ Multiplicative sequence: } a(nm) = a(n)a(m) \text{ if } n \perp m.\]
Automatic sequences

Some notation: We let k denote the base in which we work.

- $\Sigma_k = \{0, 1, \ldots, k - 1\}$, the set of digits in base k;
- Σ_k^* is the set of words over Σ_k, monoid with concatenation;
- for $n \in \mathbb{N}_0$, $(n)_k \in \Sigma_k^*$ is the base-k expansion of n;
- for $w \in \Sigma_k^*$, $[w]_k \in \mathbb{N}_0$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_0;
- a transition function $\delta: S \times \Sigma_k \to S$;
- an output function $\tau: S \to \mathbb{C}$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_k^*$ with $\delta(s, uv) = \delta(\delta(s, u), v)$;
- The sequence computed by the automaton is given by $a(n) = \tau(\delta(s_0, (n)_k))$.
- The automaton above computes the Rudin–Shapiro sequence $(-1)^\#$ of 11 in $(n)_2$.

Motto: Automatic \iff Computable by a finite device.
Automatic sequences

Some notation: We let k denote the base in which we work. → e.g. $k = 10, k = 2$

- $\Sigma_k = \{0, 1, \ldots, k - 1\}$, the set of digits in base k;
- Σ_k^* is the set of words over Σ_k, monoid with concatenation;
- for $n \in \mathbb{N}_0$, $(n)_k \in \Sigma_k^*$ is the base-k expansion of n;
- for $w \in \Sigma_k^*$, $[w]_k \in \mathbb{N}_0$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_0;
- a transition function $\delta: S \times \Sigma_k \to S$;
- an output function $\tau: S \to \mathbb{C}$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_k^*$ with $\delta(s, uv) = \delta(\delta(s, u), v)$;
- The sequence computed by the automaton is given by $a(n) = \tau(\delta(s_0, (n)_k))$.
- The automaton above computes the Rudin–Shapiro sequence $(-1)^\# \text{ of } 11 \text{ in } (n)_2$.

Motto: Automatic \iff Computable by a finite device.
Automatic sequences

Some notation: We let k denote the base in which we work.

- $\Sigma_k = \{0, 1, \ldots, k - 1\}$, the set of digits in base k;
- Σ_k^* is the set of words over Σ_k, monoid with concatenation;
- for $n \in \mathbb{N}_0$, $(n)_k \in \Sigma_k^*$ is the base-k expansion of n;
- for $w \in \Sigma_k^*$, $[w]_k \in \mathbb{N}_0$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_0;
- a transition function $\delta : S \times \Sigma_k \to S$;
- an output function $\tau : S \to \mathbb{C}$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_k^*$ with $\delta(s, uv) = \delta(\delta(s, u), v)$;
- The sequence computed by the automaton is given by $a(n) = \tau(\delta(s_0, (n)_k))$.
- The automaton above computes the Rudin–Shapiro sequence $(-1)^\#$ of 11 in $(n)_2$.

Motto: Automatic \iff Computable by a finite device.
Automatic sequences

Some notation: We let k denote the base in which we work.

- $\Sigma_k = \{0, 1, \ldots, k-1\}$, the set of digits in base k;
- Σ_k^* is the set of words over Σ_k, monoid with concatenation;
- for $n \in \mathbb{N}_0$, $(n)_k \in \Sigma_k^*$ is the base-k expansion of n;
- for $w \in \Sigma_k^*$, $[w]_k \in \mathbb{N}_0$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_0;
- a transition function $\delta: S \times \Sigma_k \to S$;
- an output function $\tau: S \to \mathbb{C}$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_k^*$ with $\delta(s,uv) = \delta(\delta(s,u),v)$;
- The sequence computed by the automaton is given by $a(n) = \tau(\delta(s_0,(n)_k))$.
- The automaton above computes the Rudin–Shapiro sequence $(-1)^\#$ of 11 in $(n)_2$.

Motto: Automatic \iff Computable by a finite device.
Automatic sequences

Some notation: We let k denote the base in which we work. → e.g. $k = 10, k = 2$

- $\Sigma_k = \{0, 1, \ldots, k - 1\}$, the set of digits in base k;
- Σ_k^* is the set of words over Σ_k, monoid with concatenation;
- for $n \in \mathbb{N}_0$, $(n)_k \in \Sigma_k^*$ is the base-k expansion of n;
- for $w \in \Sigma_k^*$, $[w]_k \in \mathbb{N}_0$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_0;
- a transition function $\delta: S \times \Sigma_k \rightarrow S$;
- an output function $\tau: S \rightarrow \mathbb{C}$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_k^*$ with $\delta(s, uv) = \delta(\delta(s, u), v)$;
- The sequence computed by the automaton is given by $a(n) = \tau(\delta(s_0, (n)_k))$.
- The automaton above computes the Rudin–Shapiro sequence $(-1)^\#$ of 11 in $(n)_2$.

Motto: Automatic \iff Computable by a finite device.
Automatic sequences

Some notation: We let k denote the base in which we work.

- $\Sigma_k = \{0, 1, \ldots, k-1\}$, the set of digits in base k;
- Σ_k^* is the set of words over Σ_k, monoid with concatenation;
- for $n \in \mathbb{N}_0$, $(n)_k \in \Sigma_k^*$ is the base-k expansion of n;
- for $w \in \Sigma_k^*$, $[w]_k \in \mathbb{N}_0$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_0;
- a transition function $\delta: S \times \Sigma_k \to S$;
- an output function $\tau: S \to \mathbb{C}$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_k^*$ with $\delta(s, uv) = \delta(\delta(s, u), v)$;
- The sequence computed by the automaton is given by $a(n) = \tau(\delta(s_0, (n)_k))$.
- The automaton above computes the Rudin–Shapiro sequence $(-1)^\#_1$ of 11 in $(n)_2$.

Motto: Automatic \iff Computable by a finite device.
Automatic sequences

Some notation: We let k denote the base in which we work. → e.g. $k = 10, k = 2$

- $\Sigma_k = \{0, 1, \ldots, k - 1\}$, the set of digits in base k;
- Σ_k^* is the set of words over Σ_k, monoid with concatenation;
- for $n \in \mathbb{N}_0$, $(n)_k \in \Sigma_k^*$ is the base-k expansion of n; → no leading zeros
- for $w \in \Sigma_k^*$, $[w]_k \in \mathbb{N}_0$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_0;
- a transition function $\delta: S \times \Sigma_k \to S$;
- an output function $\tau: S \to \mathbb{C}$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_k^*$ with $\delta(s, uv) = \delta(\delta(s, u), v)$;
- The sequence computed by the automaton is given by $a(n) = \tau(\delta(s_0, (n)_k))$.
- The automaton above computes the Rudin–Shapiro sequence $(-1)^\#$ of 11 in $(n)_2$.

Motto: Automatic \iff Computable by a finite device.
Motivation

Why are we interested in classification of automatic multiplicative sequences?

- Automatic sequences give rise to one of the weakest notions of computability. Hence, for each class C of sequences it is natural to ask which sequences in C are automatic.

- Correlations of k-automatic and multiplicative sequences have been studied in the context of Sarnak conjecture. The question of equality appears as a natural “extreme” case.

- Algebraic power series $\sum_{n=0}^{\infty} a(n)X^n$, where $(a(n))_{n=0}^{\infty}$ is a multiplicative sequence, have been completely classified. Our problem is closely related to the finite field analogue.
Motivation

Why are we interested in classification of automatic multiplicative sequences?

- Automatic sequences give rise to one of the weakest notions of computability. Hence, for each class C of sequences it is natural to ask which sequences in C are automatic.

- Correlations of k-automatic and multiplicative sequences have been studied in the context of Sarnak conjecture. The question of equality appears as a natural “extreme” case.

- Algebraic power series $\sum_{n=0}^{\infty} a(n)X^n$, where $(a(n))_{n=0}^{\infty}$ is a multiplicative sequence, have been completely classified. Our problem is closely related to the finite field analogue.
Motivation

Why are we interested in classification of automatic multiplicative sequences?

- Automatic sequences give rise to one of the weakest notions of computability. Hence, for each class C of sequences it is natural to ask which sequences in C are automatic.

- Correlations of k-automatic and multiplicative sequences have been studied in the context of Sarnak conjecture. The question of equality appears as a natural “extreme” case.

- Algebraic power series $\sum_{n=0}^{\infty} a(n)X^n$, where $(a(n))_{n=0}^{\infty}$ is a multiplicative sequence, have been completely classified. Our problem is closely related to the finite field analogue.
Motivation

Why are we interested in classification of automatic multiplicative sequences?

- Automatic sequences give rise to one of the weakest notions of computability. Hence, for each class C of sequences it is natural to ask which sequences in C are automatic.

- Correlations of k-automatic and multiplicative sequences have been studied in the context of Sarnak conjecture. The question of equality appears as a natural “extreme” case.

- Algebraic power series $\sum_{n=0}^{\infty} a(n)X^n$, where $(a(n))_{n=0}^{\infty}$ is a multiplicative sequence, have been completely classified. Our problem is closely related to the finite field analogue.
Motivation

Why are we interested in classification of automatic multiplicative sequences?

- Automatic sequences give rise to one of the weakest notions of computability. Hence, for each class C of sequences it is natural to ask which sequences in C are automatic.

- Correlations of k-automatic and multiplicative sequences have been studied in the context of Sarnak conjecture. The question of equality appears as a natural “extreme” case.

- Algebraic power series $\sum_{n=0}^{\infty} a(n)X^n$, where $(a(n))_{n=0}^{\infty}$ is a multiplicative sequence, have been completely classified. Our problem is closely related to the finite field analogue.
Motivation: Sarnak conjecture for automatic sequences

Möbius function $\mu : \mathbb{N}_0 \to \{+1, 0, -1\}$ is the multiplicative sequence given by:

$$
\mu(n) = \begin{cases}
(-1)^s & \text{if } n \text{ is the product of } s \text{ different primes,} \\
0 & \text{if } n \text{ is divisible by a square.}
\end{cases}
$$

Pseudorandomness principle: “μ looks random, except for the ways it’s obviously not”.

Conjecture (Sarnak (2012))

The Möbius function is orthogonal to every deterministic sequence $(a(n))_{n=0}^{\infty}$:

$$
\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} a(n) \mu(n) = 0.
$$

\rightarrow deterministic $=$ produced by a zero-entropy topological dynamical system

Example: automatic sequences are deterministic. \rightarrow linear subword complexity

Theorem (Müllner (2016), special cases by various authors)

Automatic sequences fulfill the Sarnak conjecture.
Motivation: Sarnak conjecture for automatic sequences

Möbius function $\mu: \mathbb{N}_0 \to \{+1, 0, -1\}$ is the multiplicative sequence given by:

$$
\mu(n) = \begin{cases}
(-1)^s & \text{if } n \text{ is the product of } s \text{ different primes}, \\
0 & \text{if } n \text{ is divisible by a square}.
\end{cases}
$$

Pseudorandomness principle: “μ looks random, except for the ways it’s obviously not”.

Conjecture (Sarnak (2012))

The Möbius function is orthogonal to every deterministic sequence $(a(n))_{n=0}^{\infty}$:

$$
\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} a(n)\mu(n) = 0.
$$

\longrightarrow deterministic $=$ produced by a zero-entropy topological dynamical system

Example: automatic sequences are deterministic. \longrightarrow linear subword complexity

Theorem (Müllner (2016), special cases by various authors)

Automatic sequences fulfill the Sarnak conjecture.
Motivation: Sarnak conjecture for automatic sequences

Möbius function $\mu : \mathbb{N}_0 \rightarrow \{+1, 0, -1\}$ is the multiplicative sequence given by:

$$
\mu(n) = \begin{cases}
(-1)^s & \text{if } n \text{ is the product of } s \text{ different primes}, \\
0 & \text{if } n \text{ is divisible by a square}.
\end{cases}
$$

Pseudorandomness principle: “μ looks random, except for the ways it’s obviously not”.

Conjecture (Sarnak (2012))

The Möbius function is orthogonal to every deterministic sequence $(a(n))_{n=0}^\infty$:

$$
\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} a(n)\mu(n) = 0.
$$

\longrightarrow deterministic $=$ produced by a zero-entropy topological dynamical system

Example: automatic sequences are deterministic. \longrightarrow linear subword complexity

Theorem (Müllner (2016), special cases by various authors)

Automatic sequences fulfill the Sarnak conjecture.
Motivation: Sarnak conjecture for automatic sequences

Möbius function $\mu: \mathbb{N}_0 \rightarrow \{+1, 0, -1\}$ is the multiplicative sequence given by:

$$\mu(n) = \begin{cases} (-1)^s & \text{if } n \text{ is the product of } s \text{ different primes}, \\ 0 & \text{if } n \text{ is divisible by a square}. \end{cases}$$

Pseudorandomness principle: “μ looks random, except for the ways it’s obviously not”.

Conjecture (Sarnak (2012))

The Möbius function is orthogonal to every deterministic sequence $(a(n))_{n=0}^\infty$:

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} a(n) \mu(n) = 0.$$

\rightarrow deterministic = produced by a zero-entropy topological dynamical system

Example: automatic sequences are deterministic. \rightarrow linear subword complexity

Theorem (Müllner (2016), special cases by various authors)

Automatic sequences fulfill the Sarnak conjecture.
Motivation: Sarnak conjecture for automatic sequences

Möbius function \(\mu: \mathbb{N}_0 \rightarrow \{+1, 0, -1\} \) is the multiplicative sequence given by:

\[
\mu(n) = \begin{cases}
(-1)^s & \text{if } n \text{ is the product of } s \text{ different primes,} \\
0 & \text{if } n \text{ is divisible by a square.}
\end{cases}
\]

Pseudorandomness principle: “\(\mu \) looks random, except for the ways it’s obviously not”.

Conjecture (Sarnak (2012))

The Möbius function is orthogonal to every deterministic sequence \((a(n))_{n=0}^\infty\):

\[
\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} a(n) \mu(n) = 0.
\]

\(\rightarrow\) deterministic = produced by a zero-entropy topological dynamical system

Example: automatic sequences are deterministic. \(\rightarrow\) linear subword complexity

Theorem (Müllner (2016), special cases by various authors)

Automatic sequences fulfill the Sarnak conjecture.
Motivation: correlations of automatic and multiplicative sequences

Question: Which multiplicative sequences ν, other than μ are orthogonal to all (nice) automatic sequences?

Minimal assumptions: Since periodic sequences are automatic, ν needs to be aperiodic, i.e. $\frac{1}{N} \sum_{n=0}^{N-1} \nu(An + B) \to 0$ for each $A \in \mathbb{N}$, $B \in \mathbb{N}_0$.

Theorem (Lemańczyk & Müllner (2018))

Let $(a(n))_{n=0}^{\infty}$ be a primitive automatic sequence and let $(\nu(n))_{n=0}^{\infty}$ be a bounded, aperiodic multiplicative sequence. Then $\frac{1}{N} \sum_{n=0}^{N-1} a(n)\nu(n) \to 0$ as $N \to \infty$.

\longrightarrow primitive \simeq behaves the same way on all long intervals
\longrightarrow e.g. $n \mapsto (-1)^{\lfloor \log_k n \rfloor} = (-1)^{\text{length of } (n)_k}$ is not primitive

Opposite extreme: If $a = \nu$ is both automatic and multiplicative sequence then the correlation $\frac{1}{N} \sum_{n=0}^{N-1} \bar{a}(n)\nu(n) = \frac{1}{N} \sum_{n=0}^{N-1} |a(n)|^2$ is “as large as possible”.
\longrightarrow new interesting phenomena, e.g. the sparse case
Motivation: correlations of automatic and multiplicative sequences

Question: Which multiplicative sequences \(\nu \), other than \(\mu \) are orthogonal to all (nice) automatic sequences?

Minimal assumptions: Since periodic sequences are automatic, \(\nu \) needs to be *aperiodic*, i.e. \(\frac{1}{N} \sum_{n=0}^{N-1} \nu(An + B) \to 0 \) for each \(A \in \mathbb{N}, B \in \mathbb{N}_0 \).

Theorem (Lemańczyk & Müllner (2018))

Let \((a(n))_{n=0}^\infty \) be a *primitive* automatic sequence and let \((\nu(n))_{n=0}^\infty \) be a bounded, aperiodic multiplicative sequence. Then \(\frac{1}{N} \sum_{n=0}^{N-1} a(n)\nu(n) \to 0 \) as \(N \to \infty \).

\[\longrightarrow \text{primitive } \sim \text{ behaves the same way on all long intervals} \]
\[\longrightarrow \text{e.g. } n \mapsto (-1)^{\lfloor \log_k n \rfloor} = (-1)^{\text{length of } (n)_k} \text{ is not primitive} \]

Opposite extreme: If \(a = \nu \) is both automatic and multiplicative sequence then the correlation \(\frac{1}{N} \sum_{n=0}^{N-1} a(n)\nu(n) = \frac{1}{N} \sum_{n=0}^{N-1} |a(n)|^2 \) is “as large as possible”.

\[\longrightarrow \text{new interesting phenomena, e.g. the sparse case} \]
Motivation: correlations of automatic and multiplicative sequences

Question: Which multiplicative sequences \(\nu \), other than \(\mu \) are orthogonal to all (nice) automatic sequences?

Minimal assumptions: Since periodic sequences are automatic, \(\nu \) needs to be *aperiodic*, i.e. \(\frac{1}{N} \sum_{n=0}^{N-1} \nu(An + B) \to 0 \) for each \(A \in \mathbb{N}, B \in \mathbb{N}_0 \).

Theorem (Lemańczyk & Müllner (2018))

Let \((a(n))_{n=0}^{\infty}\) be a *primitive* automatic sequence and let \((\nu(n))_{n=0}^{\infty}\) be a bounded, aperiodic multiplicative sequence. Then \(\frac{1}{N} \sum_{n=0}^{N-1} a(n)\nu(n) \to 0 \) as \(N \to \infty \).

\[\text{---} \text{primitive } \simeq \text{ behaves the same way on all long intervals} \]

\[\text{--- e.g. } n \mapsto (-1)^{\left\lfloor \log_k n \right\rfloor} = (-1)^{\text{length of } (n)_k} \text{ is not primitive} \]

Opposite extreme: If \(a = \nu \) is both automatic and multiplicative sequence then the correlation \(\frac{1}{N} \sum_{n=0}^{N-1} \bar{a}(n)\nu(n) = \frac{1}{N} \sum_{n=0}^{N-1} |a(n)|^2 \) is “as large as possible”.

\[\text{--- new interesting phenomena, e.g. the sparse case} \]
Motivation: correlations of automatic and multiplicative sequences

Question: Which multiplicative sequences \(\nu \), other than \(\mu \) are orthogonal to all (nice) automatic sequences?

Minimal assumptions: Since periodic sequences are automatic, \(\nu \) needs to be aperiodic, i.e.
\[
\frac{1}{N} \sum_{n=0}^{N-1} \nu(An + B) \to 0 \text{ for each } A \in \mathbb{N}, B \in \mathbb{N}_0.
\]

Theorem (Lemańczyk & Müllner (2018))

Let \((a(n))_{n=0}^{\infty}\) be a primitive automatic sequence and let \((\nu(n))_{n=0}^{\infty}\) be a bounded, aperiodic multiplicative sequence. Then
\[
\frac{1}{N} \sum_{n=0}^{N-1} a(n)\nu(n) \to 0 \text{ as } N \to \infty.
\]

\(\rightarrow\) primitive \(\sim\) behaves the same way on all long intervals
\(\rightarrow\) e.g. \(n \mapsto (-1)^{\lfloor \log_k n \rfloor} = (-1)^{\text{length of } (n)_k}\) is not primitive

Opposite extreme: If \(a = \nu\) is both automatic and multiplicative sequence then
the correlation
\[
\frac{1}{N} \sum_{n=0}^{N-1} \bar{a}(n)\nu(n) = \frac{1}{N} \sum_{n=0}^{N-1} |a(n)|^2
\]
is “as large as possible”.
\(\rightarrow\) new interesting phenomena, e.g. the sparse case
Motivation — algebraic formal power series

Let \(K \) be a field, let \(a : \mathbb{N}_0 \to K \) be a sequence, and let \(F \) be the corresponding series:

\[
F(X) = \sum_{n=0}^{\infty} a(n)X^n \in K[[X]].
\]

Question

For which multiplicative sequences \((a(n))_{n=0}^{\infty}\) is \(F(X) \) algebraic over \(K(X) \)?

Theorem (Bézivin (1995), Bell, Bruin & Coons (2012))

If \(\text{char } K = 0 \), \((a(n))_n\) is multiplicative and \(F(X) \) is algebraic over \(K(X) \) then either

- \(a(n) = n^c \chi(n) \) for some \(c \in \mathbb{N}_0 \) and periodic \(\chi : \mathbb{N}_0 \to K \); or
- the sequence \(a \) is eventually zero.

Theorem (Christol (1979))

Let \(q \) be a prime power and let \(K = \mathbb{F}_q \). Then the following conditions are equivalent:

- the formal power series \(F(X) \) is algebraic over \(K(X) \);
- the sequence \((a(n))_{n=0}^{\infty}\) is \(q \)-automatic.
Motivation — algebraic formal power series

Let \mathbb{K} be a field, let $a: \mathbb{N}_0 \rightarrow \mathbb{K}$ be a sequence, and let F be the corresponding series:

$$F(X) = \sum_{n=0}^{\infty} a(n)X^n \in \mathbb{K}[[X]].$$

Question

For which multiplicative sequences $(a(n))_{n=0}^{\infty}$ is $F(X)$ algebraic over $\mathbb{K}(X)$?

Theorem (Bézivin (1995), Bell, Bruin & Coons (2012))

If $\text{char} \mathbb{K} = 0$, $(a(n))_n$ is multiplicative and $F(X)$ is algebraic over $\mathbb{K}(X)$ then either

- $a(n) = n^c \chi(n)$ for some $c \in \mathbb{N}_0$ and periodic $\chi: \mathbb{N}_0 \rightarrow \mathbb{K}$; or
- the sequence a is eventually zero.

Theorem (Christol (1979))

Let q be a prime power and let $\mathbb{K} = \mathbb{F}_q$. Then the following conditions are equivalent:

- the formal power series $F(X)$ is algebraic over $\mathbb{K}(X)$;
- the sequence $(a(n))_{n=0}^{\infty}$ is q-automatic.
Motivation — algebraic formal power series

Let \mathbb{K} be a field, let $a: \mathbb{N}_0 \rightarrow \mathbb{K}$ be a sequence, and let F be the corresponding series:

$$F(X) = \sum_{n=0}^{\infty} a(n)X^n \in \mathbb{K}[[X]].$$

Question

For which multiplicative sequences $(a(n))_{n=0}^\infty$ is $F(X)$ algebraic over $\mathbb{K}(X)$?

Theorem (Bézivin (1995), Bell, Bruin & Coons (2012))

If $\text{char} \mathbb{K} = 0$, $(a(n))_n$ is multiplicative and $F(X)$ is algebraic over $\mathbb{K}(X)$ then either

- $a(n) = n^c \chi(n)$ for some $c \in \mathbb{N}_0$ and periodic $\chi: \mathbb{N}_0 \rightarrow \mathbb{K}$; or
- the sequence a is eventually zero.

Theorem (Christol (1979))

Let q be a prime power and let $\mathbb{K} = \mathbb{F}_q$. Then the following conditions are equivalent:

- the formal power series $F(X)$ is algebraic over $\mathbb{K}(X)$;
- the sequence $(a(n))_{n=0}^\infty$ is q-automatic.
Motivation — algebraic formal power series

Let \mathbb{K} be a field, let $a: \mathbb{N}_0 \to \mathbb{K}$ be a sequence, and let F be the corresponding series:

$$F(X) = \sum_{n=0}^{\infty} a(n)X^n \in \mathbb{K}[[X]].$$

Question

For which multiplicative sequences $(a(n))_{n=0}^{\infty}$ is $F(X)$ algebraic over $\mathbb{K}(X)$?

Theorem (Bézivin (1995), Bell, Bruin & Coons (2012))

If $\text{char} \mathbb{K} = 0$, $(a(n))_n$ is multiplicative and $F(X)$ is algebraic over $\mathbb{K}(X)$ then either

- $a(n) = n^c \chi(n)$ for some $c \in \mathbb{N}_0$ and periodic $\chi: \mathbb{N}_0 \to \mathbb{K}$; or
- the sequence a is eventually zero.

Theorem (Christol (1979))

Let q be a prime power and let $\mathbb{K} = \mathbb{F}_q$. Then the following conditions are equivalent:

- the formal power series $F(X)$ is algebraic over $\mathbb{K}(X)$;
- the sequence $(a(n))_{n=0}^{\infty}$ is q-automatic.
Motivation — algebraic formal power series

Let \mathbb{K} be a field, let $a : \mathbb{N}_0 \to \mathbb{K}$ be a sequence, and let F be the corresponding series:

$$F(X) = \sum_{n=0}^{\infty} a(n)X^n \in \mathbb{K}[[X]].$$

Question

For which multiplicative sequences $(a(n))_{n=0}^{\infty}$ is $F(X)$ algebraic over $\mathbb{K}(X)$?

Theorem (Bézivin (1995), Bell, Bruin & Coons (2012))

If $\text{char} \mathbb{K} = 0$, $(a(n))_n$ is multiplicative and $F(X)$ is algebraic over $\mathbb{K}(X)$ then either

- $a(n) = n^c \chi(n)$ for some $c \in \mathbb{N}_0$ and periodic $\chi : \mathbb{N}_0 \to \mathbb{K}$; or
- the sequence a is eventually zero.

Theorem (Christol (1979))

Let q be a prime power and let $\mathbb{K} = \mathbb{F}_q$. Then the following conditions are equivalent:

- the formal power series $F(X)$ is algebraic over $\mathbb{K}(X)$;
- the sequence $(a(n))_{n=0}^{\infty}$ is q-automatic.
History

• D. Leitmann & D. Wolke (1976) Complete classification of periodic multiplicative sequences (Dirichlet characters on powers of large primes).

• S. Yazdani (2001) For many multiplicative sequences $f : \mathbb{N}_0 \to \mathbb{Z}$ of number-theoretic interest and $M \geq 2$, $n \mapsto f(n) \mod M$ is not automatic. (e.g. $f = \mu$ (Möbius), ϕ (totient), σ_ℓ (divisor sum), τ_ℓ (divisor count), etc.) \rightarrow explicit formulae, finiteness of k-kernels

• J.–C. Schlage–Puchta (2011) Each automatic, completely multiplicative, non-vanishing sequence is almost periodic (d-limit of periodic sequences). \rightarrow mean values of multiplicative/automatic sequence

• J.P. Bell, N. Bruin & M. Coons (2012) Conjecture: Each automatic multiplicative sequence agrees with a Dirichlet character on large primes. \rightarrow main topic: algebraic power series with multiplicative coefficients
History

- **D. Leitmann & D. Wolke (1976)** Complete classification of periodic multiplicative sequences (Dirichlet characters on powers of large primes).

- **S. Yazdani (2001)** For many multiplicative sequences $f : \mathbb{N}_0 \to \mathbb{Z}$ of number-theoretic interest and $M \geq 2$, $n \mapsto f(n) \mod M$ is not automatic. (e.g. $f = \mu$ (Möbius), ϕ (totient), σ_ℓ (divisor sum), τ_ℓ (divisor count), etc.) → explicit formulae, finiteness of k-kernels

- **J.-C. Schlage-Puchta (2011)** Each automatic, completely multiplicative, non-vanishing sequence is almost periodic (d-limit of periodic sequences). → mean values of multiplicative/automatic sequence

- **J.P. Bell, N. Bruin & M. Coons (2012)** Conjecture: Each automatic multiplicative sequence agrees with a Dirichlet character on large primes. → main topic: algebraic power series with multiplicative coefficients
History

- **D. Leitmann & D. Wolke (1976)** Complete classification of periodic multiplicative sequences (Dirichlet characters on powers of large primes).

- **S. Yazdani (2001)** For many multiplicative sequences \(f : \mathbb{N}_0 \rightarrow \mathbb{Z} \) of number-theoretic interest and \(M \geq 2 \), \(n \mapsto f(n) \mod M \) is not automatic. (e.g. \(f = \mu \) (Möbius), \(\phi \) (totient), \(\sigma_\ell \) (divisor sum), \(\tau_\ell \) (divisor count), etc.)
 \(\rightarrow \) explicit formulae, finiteness of \(k \)-kernels

- **J.-C. Schlage-Puchta (2011)** Each automatic, completely multiplicative, non-vanishing sequence is almost periodic (\(d \)-limit of periodic sequences).
 \(\rightarrow \) mean values of multiplicative/automatic sequence

- **J.P. Bell, N. Bruin & M. Coons (2012)** Conjecture: Each automatic multiplicative sequence agrees with a Dirichlet character on large primes.
 \(\rightarrow \) main topic: algebraic power series with multiplicative coefficients
History

- **D. Leitmann & D. Wolke (1976)** Complete classification of periodic multiplicative sequences (Dirichlet characters on powers of large primes).

- **S. Yazdani (2001)** For many multiplicative sequences $f : \mathbb{N}_0 \to \mathbb{Z}$ of number-theoretic interest and $M \geq 2$, $n \mapsto f(n) \mod M$ is not automatic. (e.g. $f = \mu$ (Möbius), ϕ (totient), σ_ℓ (divisor sum), τ_ℓ (divisor count), etc.) \rightarrow explicit formulae, finiteness of k-kernels

- **J.–C. Schlage–Puchta (2011)** Each automatic, completely multiplicative, non-vanishing sequence is almost periodic (\bar{d}-limit of periodic sequences). \rightarrow mean values of multiplicative/automatic sequence

- **J.P. Bell, N. Bruin & M. Coons (2012)** Conjecture: Each automatic multiplicative sequence agrees with a Dirichlet character on large primes. \rightarrow main topic: algebraic power series with multiplicative coefficients
History

- **D. Leitmann & D. Wolke (1976)** Complete classification of periodic multiplicative sequences (Dirichlet characters on powers of large primes).

- **S. Yazdani (2001)** For many multiplicative sequences $f : \mathbb{N}_0 \rightarrow \mathbb{Z}$ of number-theoretic interest and $M \geq 2$, $n \mapsto f(n) \mod M$ is not automatic. (e.g. $f = \mu$ (Möbius), ϕ (totient), σ_ℓ (divisor sum), τ_ℓ (divisor count), etc.) → explicit formulae, finiteness of k-kernels

- **J.-C. Schlage-Puchta (2011)** Each automatic, completely multiplicative, non-vanishing sequence is almost periodic (\bar{d}-limit of periodic sequences). → mean values of multiplicative/automatic sequence

- **J.P. Bell, N. Bruin & M. Coons (2012)** Conjecture: Each automatic multiplicative sequence agrees with a Dirichlet character on large primes. → main topic: algebraic power series with multiplicative coefficients
History

- **Y. Hu (2017)** Let \(a \) be an automatic, completely multiplicative sequence with \(a(p) = 1 \) for all sufficiently large primes. Then there is at most one prime \(p \) with \(a(p) \neq 0, 1 \) (and \(a \) is \(p \)-automatic). \(\rightarrow \) estimates on subword complexity

- **J.-P. Allouche, L. Goldmakher (2018)** Study of “mock characters”: automatic completely multiplicative with extra assumptions. \(\rightarrow \) analogy to Dirichlet characters, “pretentious” number theory

- **O. Klurman & P. Kurlberg (2019) and Sh. Li (2020)** Each automatic, completely multiplicative sequence agrees with a Dirichlet character on large primes. \(\rightarrow \) Klurman–Kurlberg: heavy-duty number theory, e.g. work on Artin conjecture \(\rightarrow \) Li: combinatorics/automata

- **O. Klurman & P. Kurlberg (2020) and K. (2020)** Positive answer to BBC conjecture: Each automatic multiplicative sequence agrees with a Dirichlet character on large primes. \(\rightarrow \) Klurman–Kurlberg: heavy-duty number theory, similar to before \(\rightarrow \) K.: combinatorics/automata + the previous Klurman–Kurlberg paper

- **M. Lemańczyk, C. Müller & K. (2020)** Classification of automatic multiplicative sequences (including behaviour on small primes).
History

- **Y. Hu (2017)** Let \(a \) be an automatic, completely multiplicative sequence with \(a(p) = 1 \) for all sufficiently large primes. Then there is at most one prime \(p \) with \(a(p) \neq 0, 1 \) (and \(a \) is \(p \)-automatic).

 \[\rightarrow \text{analogy to Dirichlet characters, “pretentious” number theory} \]

- **O. Klurman & P. Kurlberg (2019) and Sh. Li (2020)** Each automatic, completely multiplicative sequence agrees with a Dirichlet character on large primes.
 \[\rightarrow \text{Klurman–Kurlberg: heavy-duty number theory, e.g. work on Artin conjecture} \]
 \[\rightarrow \text{Li: combinatorics/automata} \]

- **O. Klurman & P. Kurlberg (2020) and K. (2020)** Positive answer to BBC conjecture: Each automatic multiplicative sequence agrees with a Dirichlet character on large primes.
 \[\rightarrow \text{Klurman–Kurlberg: heavy-duty number theory, similar to before} \]
 \[\rightarrow \text{K.: combinatorics/automata + the previous Klurman–Kurlberg paper} \]

- **M. Lemańczyk, C. Müller & K. (2020)** Classification of automatic multiplicative sequences (including behaviour on small primes).
History

- **Y. Hu (2017)** Let a be an automatic, completely multiplicative sequence with $a(p) = 1$ for all sufficiently large primes. Then there is at most one prime p with $a(p) \neq 0, 1$ (and a is p-automatic).

- **O. Klurman & P. Kurlberg (2019) and Sh. Li (2020)** Each automatic, completely multiplicative sequence agrees with a Dirichlet character on large primes.

- **O. Klurman & P. Kurlberg (2020) and K. (2020)** Positive answer to BBC conjecture: Each automatic multiplicative sequence agrees with a Dirichlet character on large primes.

- **M. Lemańczyk, C. Müller & K. (2020)** Classification of automatic multiplicative sequences (including behaviour on small primes).
History

- **Y. Hu (2017)** Let a be an automatic, completely multiplicative sequence with $a(p) = 1$ for all sufficiently large primes. Then there is at most one prime p with $a(p) \neq 0, 1$ (and a is p-automatic).
 → estimates on subword complexity

 → analogy to Dirichlet characters, “pretentious” number theory

- **O. Klurman & P. Kurlberg (2019) and Sh. Li (2020)** Each automatic, completely multiplicative sequence agrees with a Dirichlet character on large primes.
 → Klurman–Kurlberg: heavy-duty number theory, e.g. work on Artin conjecture
 → Li: combinatorics/automata

- **O. Klurman & P. Kurlberg (2020) and K. (2020)** Positive answer to BBC conjecture: Each automatic multiplicative sequence agrees with a Dirichlet character on large primes.
 → Klurman–Kurlberg: heavy-duty number theory, similar to before
 → K.: combinatorics/automata + the previous Klurman–Kurlberg paper

- **M. Lemańczyk, C. Müller & K. (2020)** Classification of automatic multiplicative sequences (including behaviour on small primes).
History

- **Y. Hu (2017)** Let a be an automatic, completely multiplicative sequence with $a(p) = 1$ for all sufficiently large primes. Then there is at most one prime p with $a(p) \neq 0, 1$ (and a is p-automatic).
 \[\rightarrow\text{estimates on subword complexity}\]

 \[\rightarrow\text{analogy to Dirichlet characters, “pretentious” number theory}\]

- **O. Klurman & P. Kurlberg (2019) and Sh. Li (2020)** Each automatic, completely multiplicative sequence agrees with a Dirichlet character on large primes.
 \[\rightarrow\text{Klurman–Kurlberg: heavy-duty number theory, e.g. work on Artin conjecture}\]
 \[\rightarrow\text{Li: combinatorics/automata}\]

- **O. Klurman & P. Kurlberg (2020) and K. (2020)** Positive answer to BBC conjecture: Each automatic multiplicative sequence agrees with a Dirichlet character on large primes.
 \[\rightarrow\text{Klurman–Kurlberg: heavy-duty number theory, similar to before}\]
 \[\rightarrow\text{K.: combinatorics/automata + the previous Klurman–Kurlberg paper}\]

- **M. Lemańczyk, C. Müller & K. (2020)** Classification of automatic multiplicative sequences (including behaviour on small primes).
History

- **Y. Hu (2017)** Let a be an automatic, completely multiplicative sequence with $a(p) = 1$ for all sufficiently large primes. Then there is at most one prime p with $a(p) \neq 0, 1$ (and a is p-automatic). → estimates on subword complexity

 → analogy to Dirichlet characters, “pretentious” number theory

- **O. Klurman & P. Kurlberg (2019) and Sh. Li (2020)** Each automatic, completely multiplicative sequence agrees with a Dirichlet character on large primes.
 → Klurman–Kurlberg: heavy-duty number theory, e.g. work on Artin conjecture
 → Li: combinatorics/automata

- **O. Klurman & P. Kurlberg (2020) and K. (2020)** Positive answer to BBC conjecture: Each automatic multiplicative sequence agrees with a Dirichlet character on large primes.
 → Klurman–Kurlberg: heavy-duty number theory, similar to before
 → K.: combinatorics/automata + the previous Klurman–Kurlberg paper

- **M. Lemańczyk, C. Müller & K. (2020)** Classification of automatic multiplicative sequences (including behaviour on small primes).
Main result

Theorem (K., Lemańczyk, Müllner)

Let \(a : \mathbb{N}_0 \to \mathbb{C} \) be \(k \)-automatic, multiplicative, not eventually periodic. Then \(k \) is a power of a prime \(p \) and the sequence \(a \) takes the form

\[
a(n) = f(\nu_p(n)) \cdot g(n/p^{\nu_p(n)})
\]

(*)

where \(f \) and \(g \) are eventually periodic, \(f(0) = 1 \) and \(g \) is multiplicative.

\[\nu_p(n) = \max \{ \nu : p^\nu \mid n \}\]

Further comments:

- Conversely, any sequence of the form (*) is \(p \)-automatic and multiplicative.
- The representation in (*) is essentially unique.
- Any multiplicative sequence takes the form (*) where (necessarily):
 \[f(n) = a(p^{\nu_p(n)}), \quad g(n) = a(n) \text{ if } p \nmid n, \quad g(p^{\alpha}) = 0 \text{ and } g \text{ is multiplicative.} \]
 If \(a \) is \(p \)-automatic then \(f \) eventually periodic. The gist of our theorem is:
 (i) \(k \) must be a prime power; (ii) \(g \) must be eventually periodic.
- Any eventually periodic multiplicative sequence is periodic or eventually zero.
Main result

Theorem (K., Lemańczyk, Müllner)

Let \(a : \mathbb{N}_0 \to \mathbb{C} \) be \(k \)-automatic, multiplicative, not eventually periodic. Then \(k \) is a power of a prime \(p \) and the sequence \(a \) takes the form

\[
a(n) = f(\nu_p(n)) \cdot g(n/p^{\nu_p(n)})
\]

where \(f \) and \(g \) are eventually periodic, \(f(0) = 1 \) and \(g \) is multiplicative.

\(\nu_p(n) = \max \{ \nu : p^\nu \mid n \} \)

Further comments:

- Conversely, any sequence of the form (*) is \(p \)-automatic and multiplicative.
- The representation in (*) is essentially unique.
- Any multiplicative sequence takes the form (*) where (necessarily):
 \(f(n) = a(p^{\nu_p(n)}) \), \(g(n) = a(n) \) if \(p \nmid n \), \(g(p^\alpha) = 0 \) and \(g \) is multiplicative.
 If \(a \) is \(p \)-automatic then \(f \) eventually periodic. The gist of our theorem is:
 \(i \) \(k \) must be a prime power; \(ii \) \(g \) must be eventually periodic.
- Any eventually periodic multiplicative sequence is periodic or eventually zero.
Main result

Theorem (K., Lemańczyk, Müllner)

Let \(a : \mathbb{N}_0 \to \mathbb{C} \) be \(k \)-automatic, multiplicative, not eventually periodic. Then \(k \) is a power of a prime \(p \) and the sequence \(a \) takes the form

\[
a(n) = f(\nu_p(n)) \cdot g(n/p^{\nu_p(n)})
\]

where \(f \) and \(g \) are eventually periodic, \(f(0) = 1 \) and \(g \) is multiplicative.

\[\nu_p(n) = \max \{ \nu : p^\nu \mid n \}\]

Further comments:

- Conversely, any sequence of the form (*) is \(p \)-automatic and multiplicative.
- The representation in (*) is essentially unique.
- Any multiplicative sequence takes the form (*) where (necessarily):
 \[
f(n) = a(p^{\nu_p(n)}), \quad g(n) = a(n) \text{ if } p \nmid n, \quad g(p^{\alpha}) = 0 \text{ and } g \text{ is multiplicative.}
\]
 If \(a \) is \(p \)-automatic then \(f \) eventually periodic. The gist of our theorem is:
 (i) \(k \) must be a prime power; (ii) \(g \) must be eventually periodic.
- Any eventually periodic multiplicative sequence is periodic or eventually zero.
Main result

Theorem (K., Lemańczyk, Müllner)

Let \(a : \mathbb{N}_0 \to \mathbb{C} \) be \(k \)-automatic, multiplicative, not eventually periodic. Then \(k \) is a power of a prime \(p \) and the sequence \(a \) takes the form

\[
a(n) = f(\nu_p(n)) \cdot g(n/p^{\nu_p(n)})
\]

where \(f \) and \(g \) are eventually periodic, \(f(0) = 1 \) and \(g \) is multiplicative.

\[
\nu_p(n) = \max \{ \nu : p^{\nu} | n \}
\]

Further comments:

- Conversely, any sequence of the form (*) is \(p \)-automatic and multiplicative.
- The representation in (*) is essentially unique.
- Any multiplicative sequence takes the form (*) where (necessarily):
 \[f(n) = a(p^{\nu_p(n)}), \ g(n) = a(n) \text{ if } p \nmid n, \ g(p^\alpha) = 0 \text{ and } g \text{ is multiplicative.} \]
 If \(a \) is \(p \)-automatic then \(f \) eventually periodic. The gist of our theorem is:
 (i) \(k \) must be a prime power; (ii) \(g \) must be eventually periodic.
- Any eventually periodic multiplicative sequence is periodic or eventually zero.
Main result

Theorem (K., Lemańczyk, Müllner)

Let \(a: \mathbb{N}_0 \rightarrow \mathbb{C} \) be \(k \)-automatic, multiplicative, not eventually periodic. Then \(k \) is a power of a prime \(p \) and the sequence \(a \) takes the form

\[
a(n) = f(\nu_p(n)) \cdot g(n/p^{\nu_p(n)})
\]

where \(f \) and \(g \) are eventually periodic, \(f(0) = 1 \) and \(g \) is multiplicative.

\[\longrightarrow \nu_p(n) = \max \{ \nu : p^\nu \mid n \} \]

Further comments:

- Conversely, any sequence of the form \((*)\) is \(p \)-automatic and multiplicative.
- The representation in \((*)\) is essentially unique.
- Any multiplicative sequence takes the form \((*)\) where (necessarily):
 \[f(n) = a(p^{\nu_p(n)}), \quad g(n) = a(n) \text{ if } p \nmid n, \quad g(p^\alpha) = 0 \text{ and } g \text{ is multiplicative.}\]
 If \(a \) is \(p \)-automatic then \(f \) eventually periodic. The gist of our theorem is:
 \((i)\) \(k \) must be a prime power; \((ii)\) \(g \) must be eventually periodic.
- Any eventually periodic multiplicative sequence is periodic or eventually zero.
Main result

Theorem (K., Lemańczyk, Müllner)

Let \(a : \mathbb{N}_0 \rightarrow \mathbb{C} \) be \(k \)-automatic, multiplicative, not eventually periodic. Then \(k \) is a power of a prime \(p \) and the sequence \(a \) takes the form

\[
a(n) = f(\nu_p(n)) \cdot g(n/p^{\nu_p(n)})
\]

where \(f \) and \(g \) are eventually periodic, \(f(0) = 1 \) and \(g \) is multiplicative.

\[
\rightarrow \nu_p(n) = \max \{ \nu : p^\nu \mid n \}
\]

Further comments:

- Conversely, any sequence of the form \((*)\) is \(p \)-automatic and multiplicative.
- The representation in \((*)\) is essentially unique.
- Any multiplicative sequence takes the form \((*)\) where (necessarily):
 \[f(n) = a(p^{\nu_p(n)}), \ g(n) = a(n) \text{ if } p \nmid n, \ g(p^\alpha) = 0 \text{ and } g \text{ is multiplicative.}\]
 If \(a \) is \(p \)-automatic then \(f \) eventually periodic. The gist of our theorem is:
 (i) \(k \) must be a prime power; (ii) \(g \) must be eventually periodic.
- Any eventually periodic multiplicative sequence is periodic or eventually zero.
Main result

Theorem (K., Lemańczyk, Müllner)

Let \(a : \mathbb{N}_0 \to \mathbb{C} \) be \(k \)-automatic, multiplicative, not eventually periodic. Then \(k \) is a power of a prime \(p \) and the sequence \(a \) takes the form

\[
a(n) = f(\nu_p(n)) \cdot g(n/p^{\nu_p(n)})
\]

where \(f \) and \(g \) are eventually periodic, \(f(0) = 1 \) and \(g \) is multiplicative.

\[\rightarrow \nu_p(n) = \max \{\nu : p^\nu \mid n\}\]

Further comments:

- Conversely, any sequence of the form \((*)\) is \(p \)-automatic and multiplicative.
- The representation in \((*)\) is essentially unique.
- Any multiplicative sequence takes the form \((*)\) where (necessarily):
 \[
f(n) = a(p^{\nu_p(n)}), \quad g(n) = a(n) \text{ if } p \nmid n, \quad g(p^{\alpha}) = 0 \text{ and } g \text{ is multiplicative.}
\]
 If \(a \) is \(p \)-automatic then \(f \) eventually periodic. The gist of our theorem is:
 (i) \(k \) must be a prime power; (ii) \(g \) must be eventually periodic.
- Any eventually periodic multiplicative sequence is periodic or eventually zero.
Proof ideas: divide and conquer

Throughout, let \(a : \mathbb{N}_0 \to \mathbb{C} \) be \(k \)-automatic and multiplicative.

Density dichotomy: Consider the set

\[P_0 = \{ p \in \mathcal{P} : \text{ there exists } \alpha \in \mathbb{N} \text{ with } a(p^\alpha) = 0 \} . \]

We will say that \(a \) is **dense** if \(|P_0| < \infty \) and **sparse** if \(|P_0| = \infty \).

Lemma

The following conditions are equivalent:

- the set \(P_0 \) is infinite,
- \(a(n) = 0 \) for almost all \(n \).

\[\longrightarrow d \left(\{ n \in \mathbb{N} : a(n) \neq 0 \} \right) = 0 \]

Sketch of a proof.

- If \(|P_0| < \infty \) then \(a(n) \neq 0 \) for all \(n \) with \(n \equiv 1 \mod \prod_{p \in P_0} p \).
- Suppose \(|P_0| = \infty \) and let \(p \in P_0 \) be large, \(q = p^\alpha \), \(a(q) = 0 \). Then

\[d_{\log} \left(\{ n : a(n) \neq 0 \} \right) = pq \cdot d_{\log} \left(\{ n : a(n) \neq 0, n \equiv q \mod pq \} \right) = 0 . \]
Proof ideas: divide and conquer

Throughout, let \(a : \mathbb{N}_0 \rightarrow \mathbb{C} \) be \(k \)-automatic and multiplicative.

Density dichotomy: Consider the set

\[
P_0 = \{ p \in \mathcal{P} : \text{ there exists } \alpha \in \mathbb{N} \text{ with } a(p^\alpha) = 0 \}.
\]

We will say that \(a \) is *dense* if \(|P_0| < \infty \) and *sparse* if \(|P_0| = \infty \).

Lemma

The following conditions are equivalent:

- the set \(P_0 \) is infinite,
- \(a(n) = 0 \) for almost all \(n \).

\[\longrightarrow d(\{ n \in \mathbb{N} : a(n) \neq 0 \}) = 0 \]

Sketch of a proof.

- If \(|P_0| < \infty \) then \(a(n) \neq 0 \) for all \(n \) with \(n \equiv 1 \mod \prod_{p \in P_0} p \).
- Suppose \(|P_0| = \infty \) and let \(p \in P_0 \) be large, \(q = p^\alpha \), \(a(q) = 0 \). Then

\[
d_{\log} (\{ n : a(n) \neq 0 \}) = pq \cdot d_{\log} (\{ n : a(n) \neq 0, \ n \equiv q \mod pq \}) = 0.
\]
Proof ideas: divide and conquer

Throughout, let $a : \mathbb{N}_0 \to \mathbb{C}$ be k-automatic and multiplicative.

Density dichotomy: Consider the set

$$\mathcal{P}_0 = \{ p \in \mathcal{P} : \text{there exists } \alpha \in \mathbb{N} \text{ with } a(p^\alpha) = 0 \}.$$

We will say that a is dense if $|\mathcal{P}_0| < \infty$ and sparse if $|\mathcal{P}_0| = \infty$.

Lemma

The following conditions are equivalent:

- the set \mathcal{P}_0 is infinite,
- $a(n) = 0$ for almost all n. \hfill $\rightarrow d (\{ n \in \mathbb{N} : a(n) \neq 0 \}) = 0$

Sketch of a proof.

- If $|\mathcal{P}_0| < \infty$ then $a(n) \neq 0$ for all n with $n \equiv 1 \mod \prod_{p \in \mathcal{P}_0} p$.
- Suppose $|\mathcal{P}_0| = \infty$ and let $p \in \mathcal{P}_0$ be large, $q = p^\alpha$, $a(q) = 0$. Then

$$d_{\log} (\{ n : a(n) \neq 0 \}) = pq \cdot d_{\log} (\{ n : a(n) \neq 0, \ n \equiv q \mod pq \}) = 0.$$

Proof ideas: divide and conquer

Throughout, let $a : \mathbb{N}_0 \to \mathbb{C}$ be k-automatic and multiplicative.

Density dichotomy: Consider the set

$$P_0 = \{ p \in \mathcal{P} : \text{there exists } \alpha \in \mathbb{N} \text{ with } a(p^\alpha) = 0 \}.$$

We will say that a is *dense* if $|P_0| < \infty$ and *sparse* if $|P_0| = \infty$.

Lemma

The following conditions are equivalent:

- the set P_0 is infinite,
- $a(n) = 0$ for almost all n.

$$\rightarrow d(\{ n \in \mathbb{N} : a(n) \neq 0 \}) = 0$$

Sketch of a proof.

- If $|P_0| < \infty$ then $a(n) \neq 0$ for all n with $n \equiv 1 \mod \prod_{p \in P_0} p$.
- Suppose $|P_0| = \infty$ and let $p \in P_0$ be large, $q = p^\alpha$, $a(q) = 0$. Then

$$d_{\log} \{ n : a(n) \neq 0 \} = pq \cdot d_{\log} \{ n : a(n) \neq 0, \ n \equiv q \mod pq \} = 0.$$
Proof ideas: divide and conquer

Throughout, let \(a : \mathbb{N}_0 \to \mathbb{C} \) be \(k \)-automatic and multiplicative.

Density dichotomy: Consider the set

\[
P_0 = \{ p \in \mathcal{P} : \text{there exists } \alpha \in \mathbb{N} \text{ with } a(p^{\alpha}) = 0 \}.
\]

We will say that \(a \) is *dense* if \(|P_0| < \infty \) and *sparse* if \(|P_0| = \infty \).

Lemma

The following conditions are equivalent:

- the set \(P_0 \) is infinite,
- \(a(n) = 0 \) for almost all \(n \).

\[\rightarrow d(\{n \in \mathbb{N} : a(n) \neq 0\}) = 0\]

Sketch of a proof.

- If \(|P_0| < \infty \) then \(a(n) \neq 0 \) for all \(n \) with \(n \equiv 1 \mod \prod_{p \in P_0} p \).
- Suppose \(|P_0| = \infty \) and let \(p \in P_0 \) be large, \(q = p^\alpha \), \(a(q) = 0 \). Then

\[
d_{\log}(\{n : a(n) \neq 0\}) = pq \cdot d_{\log}(\{n : a(n) \neq 0, \ n \equiv q \mod pq\}) = 0. \]

\[\square\]
Sparse case: arid sets

A basic k-arid set of rank r takes the form

$$A = \left\{ [u_1 v_1^{\ell_1} u_2 v_2^{\ell_2} \ldots u_r v_r^{\ell_r} u_{r+1}]_k : \ell_1, \ell_2, \ldots, \ell_r \in \mathbb{N}_0 \right\}$$

where $u_1, \ldots, u_{r+1}, v_1, \ldots, v_{r+1} \in \Sigma_k^*$. A k-arid set is a union of basic k-arid sets. For example, the set of all $n \in \mathbb{N}_0$ whose base-10 expansion is increasing is 10-arid:

$$\left\{ [1^{\ell_1} 2^{\ell_2} \ldots 9^{\ell_9}]_k : \ell_1, \ell_2, \ldots, \ell_9 \in \mathbb{N}_0 \right\}.$$

Proposition

Let $a : \mathbb{N}_0 \to \mathbb{C}$ be k-automatic. Then one of the following holds:

- the set $\{n \in \mathbb{N}_0 : a(n) \neq 0\}$ is k-arid;
- there are $u, v_1 \neq v_2, w \in \Sigma_k^*$ with $|v_1| = |v_2|, a([uvw]_k) \neq 0$ for all $v \in \{v_1, v_2\}^*$.

Consequence: If a is sparse then the set $\{n \in \mathbb{N}_0 : a(n) \neq 0\}$ is k-arid.

Proof: Given $u, v_1 \neq v_2, w \in \Sigma_k^*$, the set $\{[uvw]_k : v \in \{v_1, v_2\}^*\}$ intersects all residue classes modulo any power of a large prime.
Sparse case: arid sets

A basic k-arid set of rank r takes the form

$$A = \left\{ [u_1v_1^{\ell_1}u_2v_2^{\ell_2} \ldots u_rv_r^{\ell_r}u_{r+1}]_k : \ell_1, \ell_2, \ldots, \ell_r \in \mathbb{N}_0 \right\}$$

where $u_1, \ldots, u_{r+1}, v_1, \ldots, v_{r+1} \in \Sigma_k^*$. A k-arid set is a union of basic k-arid sets. For example, the set of all $n \in \mathbb{N}_0$ whose base-10 expansion is increasing is 10-arid:

$$\left\{ [1^{\ell_1}2^{\ell_2} \ldots 9^{\ell_9}]_k : \ell_1, \ell_2, \ldots, \ell_9 \in \mathbb{N}_0 \right\}.$$

Proposition

Let $a : \mathbb{N}_0 \rightarrow \mathbb{C}$ be k-automatic. Then one of the following holds:

- the set $\{n \in \mathbb{N}_0 : a(n) \neq 0\}$ is k-arid;
- there are $u, v_1 \neq v_2, w \in \Sigma_k^*$ with $|v_1| = |v_2|$, $a([uvw]_k) \neq 0$ for all $v \in \{v_1, v_2\}^*$.

Consequence: If a is sparse then the set $\{n \in \mathbb{N}_0 : a(n) \neq 0\}$ is k-arid.

Proof: Given $u, v_1 \neq v_2, w \in \Sigma_k^*$, the set $\{[uvw]_k : v \in \{v_1, v_2\}^*\}$ intersects all residue classes modulo any power of a large prime.
Sparse case: arid sets

A basic k-arid set of rank r takes the form

$$A = \left\{ [u_1 v_1^{\ell_1} u_2 v_2^{\ell_2} \ldots u_r v_r^{\ell_r} u_{r+1}]_k : \ell_1, \ell_2, \ldots, \ell_r \in \mathbb{N}_0 \right\}$$

where $u_1, \ldots, u_{r+1}, v_1, \ldots, v_r+1 \in \Sigma^*_k$. A k-arid set is a union of basic k-arid sets.

For example, the set of all $n \in \mathbb{N}_0$ whose base-10 expansion is increasing is 10-arid:

$$\left\{ [1^{\ell_1} 2^{\ell_2} \ldots 9^{\ell_9}]_k : \ell_1, \ell_2, \ldots, \ell_9 \in \mathbb{N}_0 \right\}.$$

Proposition

Let $a : \mathbb{N}_0 \to \mathbb{C}$ be k-automatic. Then one of the following holds:

- the set $\{ n \in \mathbb{N}_0 : a(n) \neq 0 \}$ is k-arid;
- there are $u, v_1 \neq v_2, w \in \Sigma^*_k$ with $|v_1| = |v_2|$, $a([uvw]_k) \neq 0$ for all $v \in \{v_1, v_2\}^*$.

Consequence: If a is sparse then the set $\{ n \in \mathbb{N}_0 : a(n) \neq 0 \}$ is k-arid.

Proof: Given $u, v_1 \neq v_2, w \in \Sigma^*_k$, the set $\{[uvw]_k : v \in \{v_1, v_2\}^* \}$ intersects all residue classes modulo any power of a large prime.
Sparse case: arid sets

A basic \(k \)-arid set of rank \(r \) takes the form

\[
A = \left\{ [u_1 v_1^{\ell_1} u_2 v_2^{\ell_2} \ldots u_r v_r^{\ell_r} u_{r+1}]_k : \ell_1, \ell_2, \ldots, \ell_r \in \mathbb{N}_0 \right\}
\]

where \(u_1, \ldots, u_{r+1}, v_1, \ldots, v_{r+1} \in \Sigma_k^* \). A \(k \)-arid set is a union of basic \(k \)-arid sets. For example, the set of all \(n \in \mathbb{N}_0 \) whose base-10 expansion is increasing is 10-arid:

\[
\left\{ [1^{\ell_1} 2^{\ell_2} \ldots 9^{\ell_9}]_k : \ell_1, \ell_2, \ldots, \ell_9 \in \mathbb{N}_0 \right\}.
\]

Proposition

Let \(a : \mathbb{N}_0 \to \mathbb{C} \) be \(k \)-automatic. Then one of the following holds:

- the set \(\{ n \in \mathbb{N}_0 : a(n) \neq 0 \} \) is \(k \)-arid;
- there are \(u, v_1 \neq v_2, w \in \Sigma_k^* \) with \(|v_1| = |v_2|, a([uvw]_k) \neq 0 \) for all \(v \in \{v_1, v_2\}^* \).

Consequence: If \(a \) is sparse then the set \(\{ n \in \mathbb{N}_0 : a(n) \neq 0 \} \) is \(k \)-arid.

Proof: Given \(u, v_1 \neq v_2, w \in \Sigma_k^* \), the set \(\{[uvw]_k : v \in \{v_1, v_2\}^* \} \) intersects all residue classes modulo any power of a large prime.
Sparse case: rank estimates

Story so far: The set \(Z := \{ n \in \mathbb{N}_0 : a(n) \neq 0 \} \) is \(k \)-arid.

Next goal: \(Z \) is a union of geometric progressions: \(Z = \bigcup_{i=1}^{s} \{ b_i k^{c_i \ell} : \ell \in \mathbb{N}_0 \} \).

- A basic \(k \)-arid set of rank \(r \) is contained in a “\(k \)-geometric progression of rank \(r \)”
 \[
 \left\{ x_1 k^{a_1 \ell_1'} + \cdots + x_r k^{a_r \ell_r'} + x_{r+1} : \ell_1' \geq \ell_2' \geq \cdots \geq \ell_r' \geq 0 \right\} \tag{†}
 \]
 where \(x_i \in \mathbb{Q}, a_i \in \mathbb{N}, \) all chosen so that the set above is contained in \(\mathbb{N}_0 \).

- Conversely, any set of the form (†) is \(k \)-arid of rank \(\leq r \).

- It follows that for \(k \)-arid sets \(A, B \) or ranks \(r, s \) respectively, there exists a \(k \)-arid set \(C \) of rank \(\leq rs + r + s - 1 \) such that \(A \cdot B \subset C \). Conversely: rank(\(C \)) \(\geq rs \).

- If \(a \) was completely multiplicative, then we would have \(Z \cdot Z \subset Z \). This is only possible if rank(\(Z \))^2 \(\leq \) rank(\(Z \)), so rank(\(Z \)) \(\leq 1 \).

- Without extra assumptions, \(Z \) is still closed under the operation \((n, m) \mapsto nm/\gcd(n, m) \) which we can use to construct high rank \(k \)-arid set in \(Z \), leading to contradiction unless rank(\(Z \)) \(\leq 1 \).

- If rank(\(Z \)) = 1 and \(\{ xk^{a\ell} + y : \ell \in \mathbb{N}_0 \} \subset Z \) is one of its basic components, apply ideas above to show that \(y = 0 \).
Sparse case: rank estimates

Story so far: The set \(Z := \{ n \in \mathbb{N}_0 : a(n) \neq 0 \} \) is \(k \)-arid.

Next goal: \(Z \) is a union of geometric progressions: \(Z = \bigcup_{i=1}^{s} \{ b_i k^{c_i \ell} : \ell \in \mathbb{N}_0 \} \).

- A basic \(k \)-arid set of rank \(r \) is contained in a “\(k \)-geometric progression of rank \(r \)”
 \[
 \left\{ x_1 k^{a_1 \ell_1'} + \cdots + x_r k^{a_r \ell_r'} + x_{r+1} : \ell_1' \geq \ell_2' \geq \cdots \geq \ell_r' \geq 0 \right\} (\dagger)
 \]
 where \(x_i \in \mathbb{Q}, a_i \in \mathbb{N}, \) all chosen so that the set above is contained in \(\mathbb{N}_0 \).
- Conversely, any set of the form \((\dagger)\) is \(k \)-arid of rank \(\leq r \).
- It follows that for \(k \)-arid sets \(A, B \) or ranks \(r, s \) respectively, there exists a \(k \)-arid set \(C \) of rank \(\leq rs + r + s - 1 \) such that \(A \cdot B \subset C \). Conversely: \(\text{rank}(C) \geq rs \).
- If \(a \) was completely multiplicative, then we would have \(Z \cdot Z \subset Z \). This is only possible if \(\text{rank}(Z)^2 \leq \text{rank}(Z) \), so \(\text{rank}(Z) \leq 1 \).
- Without extra assumptions, \(Z \) is still closed under the operation \((n, m) \mapsto nm / \gcd(n, m) \) which we can use to construct high rank \(k \)-arid set in \(Z \), leading to contradiction unless \(\text{rank}(Z) \leq 1 \).
- If \(\text{rank}(Z) = 1 \) and \(\{ x k^{a \ell} + y : \ell \in \mathbb{N}_0 \} \subset Z \) is one of its basic components, apply ideas above to show that \(y = 0 \).
Sparse case: rank estimates

Story so far: The set $Z := \{ n \in \mathbb{N}_0 : a(n) \neq 0 \}$ is k-arid.

Next goal: Z is a union of geometric progressions: $Z = \bigcup_{i=1}^{s} \{ b_i k^{c_i \ell} : \ell \in \mathbb{N}_0 \}$.

- A basic k-arid set of rank r is contained in a “k-geometric progression of rank r”

\[\left\{ x_1 k^{a_1 \ell'_1} + \cdots + x_r k^{a_r \ell'_r} + x_{r+1} : \ell'_1 \geq \ell'_2 \geq \cdots \geq \ell'_r \geq 0 \right\} \quad (*) \]

where $x_i \in \mathbb{Q}$, $a_i \in \mathbb{N}$, all chosen so that the set above is contained in \mathbb{N}_0.

- Conversely, any set of the form (*) is k-arid of rank $\leq r$.

- It follows that for k-arid sets A, B or ranks r, s respectively, there exists a k-arid set C of rank $\leq rs + r + s - 1$ such that $A \cdot B \subset C$. Conversely: $\text{rank}(C) \geq rs$.

- If a was completely multiplicative, then we would have $Z \cdot Z \subset Z$. This is only possible if $\text{rank}(Z)^2 \leq \text{rank}(Z)$, so $\text{rank}(Z) \leq 1$.

- Without extra assumptions, Z is still closed under the operation $(n, m) \mapsto nm / \gcd(n, m)$ which we can use to construct high rank k-arid set in Z, leading to contradiction unless $\text{rank}(Z) \leq 1$.

- If $\text{rank}(Z) = 1$ and $\{ x k^{a \ell} + y : \ell \in \mathbb{N}_0 \} \subset Z$ is one of its basic components, apply ideas above to show that $y = 0$.
Sparse case: rank estimates

Story so far: The set $Z := \{ n \in \mathbb{N}_0 : a(n) \neq 0 \}$ is k-arid.

Next goal: Z is a union of geometric progressions: $Z = \bigcup_{i=1}^{s} \{ b_i k^{c_i \ell} : \ell \in \mathbb{N}_0 \}$.

- A basic k-arid set of rank r is contained in a “k-geometric progression of rank r”

$$\left\{ x_1 k^{a_1 \ell'_1} + \cdots + x_r k^{a_r \ell'_r} + x_{r+1} : \ell'_1 \geq \ell'_2 \geq \cdots \geq \ell'_r \geq 0 \right\} \quad (\dagger)$$

where $x_i \in \mathbb{Q}$, $a_i \in \mathbb{N}$, all chosen so that the set above is contained in \mathbb{N}_0.

- Conversely, any set of the form (\dagger) is k-arid of rank $\leq r$.

- It follows that for k-arid sets A, B or ranks r, s respectively, there exists a k-arid set C of rank $\leq rs + r + s - 1$ such that $A \cdot B \subset C$. Conversely: rank$(C) \geq rs$.

- If a was completely multiplicative, then we would have $Z \cdot Z \subset Z$. This is only possible if rank$(Z)^2 \leq$ rank(Z), so rank$(Z) \leq 1$.

- Without extra assumptions, Z is still closed under the operation $(n, m) \mapsto nm/\gcd(n, m)$ which we can use to construct high rank k-arid set in Z, leading to contradiction unless rank$(Z) \leq 1$.

- If rank$(Z) = 1$ and $\{ xk^{a \ell} + y : \ell \in \mathbb{N}_0 \} \subset Z$ is one of its basic components, apply ideas above to show that $y = 0$.
Sparse case: rank estimates

Story so far: The set $Z := \{n \in \mathbb{N}_0 : a(n) \neq 0\}$ is k-arid.

Next goal: Z is a union of geometric progressions: $Z = \bigcup_{i=1}^{s} \{ b_i k^{c_i \ell} : \ell \in \mathbb{N}_0 \}$.

- A basic k-arid set of rank r is contained in a “k-geometric progression of rank r”

$$\left\{ x_1 k^{a_1 \ell'_{1}} + \cdots + x_r k^{a_r \ell'_{r}} + x_{r+1} : \ell'_{1} \geq \ell'_{2} \geq \cdots \geq \ell'_{r} \geq 0 \right\} \quad (\dagger)$$

where $x_i \in \mathbb{Q}$, $a_i \in \mathbb{N}$, all chosen so that the set above is contained in \mathbb{N}_0.

- Conversely, any set of the form (\dagger) is k-arid of rank $\leq r$.

- It follows that for k-arid sets A, B or ranks r, s respectively, there exists a k-arid set C of rank $\leq rs + r + s - 1$ such that $A \cdot B \subset C$. Conversely: $\text{rank}(C) \geq rs$.

- If a was completely multiplicative, then we would have $Z \cdot Z \subset Z$. This is only possible if $\text{rank}(Z)^2 \leq \text{rank}(Z)$, so $\text{rank}(Z) \leq 1$.

- Without extra assumptions, Z is still closed under the operation $(n, m) \mapsto nm/\gcd(n, m)$ which we can use to construct high rank k-arid set in Z, leading to contradiction unless $\text{rank}(Z) \leq 1$.

- If $\text{rank}(Z) = 1$ and $\{ xk^{a\ell} + y : \ell \in \mathbb{N}_0 \} \subset Z$ is one of its basic components, apply ideas above to show that $y = 0$.
Sparse case: rank estimates

Story so far: The set \(Z := \{ n \in \mathbb{N}_0 : a(n) \neq 0 \} \) is \(k \)-arid.

Next goal: \(Z \) is a union of geometric progressions: \(Z = \bigcup_{i=1}^{s} \{ b_i k^{c_i \ell} : \ell \in \mathbb{N}_0 \} \).

- A basic \(k \)-arid set of rank \(r \) is contained in a “\(k \)-geometric progression of rank \(r \)”
 \[\left\{ x_1 k^{a_1 \ell_1'} + \cdots + x_r k^{a_r \ell_r'} + x_{r+1} : \ell_1' \geq \ell_2' \geq \cdots \geq \ell_r' \geq 0 \right\} \quad (\dagger) \]
 where \(x_i \in \mathbb{Q} \), \(a_i \in \mathbb{N} \), all chosen so that the set above is contained in \(\mathbb{N}_0 \).

- Conversely, any set of the form (\dagger) is \(k \)-arid of rank \(\leq r \).

- It follows that for \(k \)-arid sets \(A, B \) or ranks \(r, s \) respectively, there exists a \(k \)-arid set \(C \) of rank \(\leq rs + r + s - 1 \) such that \(A \cdot B \subset C \). Conversely: \(\text{rank}(C) \geq rs \).

- If \(a \) was completely multiplicative, then we would have \(Z \cdot Z \subset Z \). This is only possible if \(\text{rank}(Z)^2 \leq \text{rank}(Z) \), so \(\text{rank}(Z) \leq 1 \).

- Without extra assumptions, \(Z \) is still closed under the operation \((n, m) \mapsto nm/\gcd(n, m) \) which we can use to construct high rank \(k \)-arid set in \(Z \), leading to contradiction unless \(\text{rank}(Z) \leq 1 \).

- If \(\text{rank}(Z) = 1 \) and \(\{ xk^{a_\ell} + y : \ell \in \mathbb{N}_0 \} \subset Z \) is one of its basic components, apply ideas above to show that \(y = 0 \).
Sparse case: rank estimates

Story so far: The set $Z := \{ n \in \mathbb{N}_0 : a(n) \neq 0 \}$ is k-arid.

Next goal: Z is a union of geometric progressions: $Z = \bigcup_{i=1}^{s} \{ b_i k^{c_i \ell} : \ell \in \mathbb{N}_0 \}$.

- A basic k-arid set of rank r is contained in a “k-geometric progression of rank r”

$$\left\{ x_1 k^{a_1 \ell'_1} + \cdots + x_r k^{a_r \ell'_r} + x_{r+1} : \ell'_1 \geq \ell'_2 \geq \cdots \geq \ell'_{r} \geq 0 \right\} \ (\dagger)$$

where $x_i \in \mathbb{Q}, a_i \in \mathbb{N}$, all chosen so that the set above is contained in \mathbb{N}_0.

- Conversely, any set of the form (\dagger) is k-arid of rank $\leq r$.

- It follows that for k-arid sets A, B or ranks r, s respectively, there exists a k-arid set C of rank $\leq rs + r + s - 1$ such that $A \cdot B \subset C$. **Conversely:** rank(C) $\geq rs$.

- If a was completely multiplicative, then we would have $Z \cdot Z \subset Z$. This is only possible if rank(Z)$^2 \leq$ rank(Z), so rank(Z) ≤ 1.

- Without extra assumptions, Z is still closed under the operation $(n, m) \mapsto nm/\gcd(n, m)$ which we can use to construct high rank k-arid set in Z, leading to contradiction unless rank(Z) ≤ 1.

- If rank(Z) = 1 and $\{ x k^{a\ell} + y : \ell \in \mathbb{N}_0 \} \subset Z$ is one of its basic components, apply ideas above to show that $y = 0$.
Sparse case: rank estimates

Story so far: The set $Z := \{ n \in \mathbb{N}_0 : a(n) \neq 0 \}$ is k-arid.

Next goal: Z is a union of geometric progressions: $Z = \bigcup_{i=1}^{s} \{ b_i k^{c_i \ell} : \ell \in \mathbb{N}_0 \}$.

- A basic k-arid set of rank r is contained in a “k-geometric progression of rank r”
 \[
 \left\{ x_1 k^{a_1 \ell_1'} + \cdots + x_r k^{a_r \ell_r'} + x_{r+1} : \ell_1' \geq \ell_2' \geq \cdots \geq \ell_r' \geq 0 \right\} \quad (†)
 \]
 where $x_i \in \mathbb{Q}$, $a_i \in \mathbb{N}$, all chosen so that the set above is contained in \mathbb{N}_0.

- Conversely, any set of the form (†) is k-arid of rank $\leq r$.

- It follows that for k-arid sets A, B or ranks r, s respectively, there exists a k-arid set C of rank $\leq rs + r + s - 1$ such that $A \cdot B \subset C$. Conversely: $\text{rank}(C) \geq rs$.

- If a was completely multiplicative, then we would have $Z \cdot Z \subset Z$. This is only possible if $\text{rank}(Z)^2 \leq \text{rank}(Z)$, so $\text{rank}(Z) \leq 1$.

- Without extra assumptions, Z is still closed under the operation
 $(n, m) \mapsto nm/\gcd(n, m)$ which we can use to construct high rank k-arid set in Z, leading to contradiction unless $\text{rank}(Z) \leq 1$.

- If $\text{rank}(Z) = 1$ and $\{ x k^{a\ell} + y : \ell \in \mathbb{N}_0 \} \subset Z$ is one of its basic components, apply ideas above to show that $y = 0$.

Sparse case: end of the chase

Story so far: The set of non-zero places of \(a\) is a union of geometric progressions:

\[
\{ n \in \mathbb{N}_0 : a(n) \neq 0 \} = \bigcup_{i=1}^{s} \left\{ b_i k^{c_i \ell} : \ell \in \mathbb{N}_0 \right\}.
\] (†)

Claim: The base \(k\) is a prime power (unless \(a\) is eventually zero).

Proof: Suppose \(p \mid k\), prime, \(k\) not a power of \(p\).

- There are \(\infty\) many \(\alpha \in \mathbb{N}_0\) with \(a(p^\alpha) \neq 0\).
- Each progression in (†) includes \(\leq 1\) power of \(p\);

\[\rightarrow \alpha = \nu_p(b_i) + c_i \nu_p(k) \ell \quad \rightarrow \text{iff} \quad b_i = p^{\alpha_i}\]

Back to main theorem: We may assume: \(k = p\) is prime; \(p \nmid b_i\) for all \(i\). Then

\[a(n) = f(\nu_p(n)) \cdot g(n/p^{\nu_p(n)}), \quad \text{where} \quad g := 1_{\{b_1, \ldots, b_s\}} \cdot a \quad \text{and} \quad f(\alpha) := a(p^\alpha). \quad (‡)\]

Since \(g\) is finitely supported, it is clearly eventually periodic.
Sparse case: end of the chase

Story so far: The set of non-zero places of a is a union of geometric progressions:

$$\{n \in \mathbb{N}_0 : a(n) \neq 0\} = \bigcup_{i=1}^{s} \left\{ b_i k^{c_i \ell} : \ell \in \mathbb{N}_0 \right\}. \quad (\dagger)$$

Claim: The base k is a prime power (unless a is eventually zero).

Proof: Suppose $p \mid k$, prime, k not a power of p.

- There are ∞ many $\alpha \in \mathbb{N}_0$ with $a(p^\alpha) \neq 0$.
- Each progression in (\dagger) includes ≤ 1 power of p;

$$\alpha = \nu_p(b_i) + c_i \nu_p(k) \ell \quad \longrightarrow \quad \text{iff } b_i = p^{\alpha_i} \quad \text{(\dagger)}$$

Back to main theorem: We may assume: $k = p$ is prime; $p \nmid b_i$ for all i. Then

$$a(n) = f(\nu_p(n)) \cdot g(n/p^{\nu_p(n)}), \quad \text{where } g := 1_{\{b_1, \ldots, b_s\}} \cdot a \text{ and } f(\alpha) := a(p^\alpha). \quad (\ddagger)$$

Since g is finitely supported, it is clearly eventually periodic.
Sparse case: end of the chase

Story so far: The set of non-zero places of a is a union of geometric progressions:
\[
\{n \in \mathbb{N}_0 : a(n) \neq 0\} = \bigcup_{i=1}^{s} \left\{b_i k^{c_i \ell} : \ell \in \mathbb{N}_0 \right\}.
\] (†)

Claim: The base k is a prime power (unless a is eventually zero).
Proof: Suppose $p \mid k$, prime, k not a power of p.
- There are ∞ many $\alpha \in \mathbb{N}_0$ with $a(p^\alpha) \neq 0$.
- Each progression in (†) includes ≤ 1 power of p;
 \[
 \alpha = \nu_p(b_i) + c_i \nu_p(k) \ell \\
 \text{iff } b_i = p^{\alpha_i}
 \]

Back to main theorem: We may assume: $k = p$ is prime; $p \nmid b_i$ for all i. Then
\[
a(n) = f(\nu_p(n)) \cdot g(n/p^{\nu_p(n)}), \quad \text{where } g := 1_{\{b_1, \ldots, b_s\}} \cdot a \text{ and } f(\alpha) := a(p^\alpha).
\] (‡)
Since g is finitely supported, it is clearly eventually periodic.
Sparse case: end of the chase

Story so far: The set of non-zero places of a is a union of geometric progressions:

$$\{n \in \mathbb{N}_0 : a(n) \neq 0\} = \bigcup_{i=1}^{s} \left\{b_i k^{c_i \ell} : \ell \in \mathbb{N}_0\right\}.$$ \hfill (†)

Claim: The base k is a prime power (unless a is eventually zero).

Proof: Suppose $p \mid k$, prime, k not a power of p.

- There are ∞ many $\alpha \in \mathbb{N}_0$ with $a(p^\alpha) \neq 0$. \hfill $\rightarrow \alpha = \nu_p(b_i) + c_i \nu_p(k) \ell$
- Each progression in (†) includes ≤ 1 power of p; \hfill \rightarrow iff $b_i = p^{\alpha_i}$

Back to main theorem: We may assume: $k = p$ is prime; $p \nmid b_i$ for all i. Then

$$a(n) = f(\nu_p(n)) \cdot g(n/p^{\nu_p(n)}), \quad \text{where } g := 1_{\{b_1,\ldots,b_s\}} \cdot a \text{ and } f(\alpha) := a(p^\alpha). \hfill (‡)$$

Since g is finitely supported, it is clearly eventually periodic.
Dense case: large primes

Recall: We assume that a is dense: P_0 is finite, $a(p^\alpha) \neq 0$ if p is a large prime.

Proposition

There exists a threshold p_* such that

$$a(p^\alpha) = a(p)^\alpha \neq 0 \text{ for all primes } p \geq p_* \text{ and all } \alpha \in \mathbb{N}.$$

Once this is established, we follow in the footsteps of Klurman & Kurlberg (2019).

Theorem (Elliott & Kish (2017))

If $a : \mathbb{N}_0 \to \mathbb{C}$ is a completely multiplicative, $A, B, C, D \in \mathbb{N}$ with $AD - BC \neq 0$ and

$$a(An + B)/a(Cn + D) = \text{const.} \neq 0, \quad (n \in \mathbb{N}_0)$$

then there is a Dirichlet character χ such that $a(p) = \chi(p)$ for all large primes p.

Since a is k-automatic, there are $\beta > \gamma$ with $a(k^\beta n + 1) = a(k^\gamma n + 1)$ for all $n \in \mathbb{N}_0$. Let Q be the product of all the primes $p < p_*$. Then

$$a(k^\beta Qn + 1)/a(k^\gamma Qn + 1) = 1.$$

By the theorem above, $a(p) = \chi(p)$ for large primes.
Dense case: large primes

Recall: We assume that a is dense: P_0 is finite, $a(p^\alpha) \neq 0$ if p is a large prime.

Proposition

There exists a threshold p_* such that

$$a(p^\alpha) = a(p)^\alpha \neq 0$$

for all primes $p \geq p_*$ and all $\alpha \in \mathbb{N}$. (\dagger)

Once this is established, we follow in the footsteps of Klurman & Kurlberg (2019).

Theorem (Elliott & Kish (2017))

If $a: \mathbb{N}_0 \to \mathbb{C}$ is a completely multiplicative, $A, B, C, D \in \mathbb{N}$ with $AD - BC \neq 0$ and

$$a(An + B)/a(Cn + D) = \text{const.} \neq 0, \quad (n \in \mathbb{N}_0)$$

then there is a Dirichlet character χ such that $a(p) = \chi(p)$ for all large primes p.

Since a is k-automatic, there are $\beta > \gamma$ with $a(k^\beta n + 1) = a(k^\gamma n + 1)$ for all $n \in \mathbb{N}_0$. Let Q be the product of all the primes $p < p_*$. Then

$$a(k^\beta Qn + 1)/a(k^\gamma Qn + 1) = 1.$$

By the theorem above, $a(p) = \chi(p)$ for large primes.
Dense case: large primes

Recall: We assume that a is dense: P_0 is finite, $a(p^\alpha) \neq 0$ if p is a large prime.

Proposition

There exists a threshold p_* such that

$$a(p^\alpha) = a(p)^\alpha \neq 0 \text{ for all primes } p \geq p_* \text{ and all } \alpha \in \mathbb{N}. \quad (\dagger)$$

Once this is established, we follow in the footsteps of Klurman & Kurlberg (2019).

Theorem (Elliott & Kish (2017))

If $a : \mathbb{N}_0 \to \mathbb{C}$ is a completely multiplicative, $A, B, C, D \in \mathbb{N}$ with $AD - BC \neq 0$ and

$$a(An + B)/a(Cn + D) = \text{const.} \neq 0, \quad (n \in \mathbb{N}_0)$$

then there is a Dirichlet character χ such that $a(p) = \chi(p)$ for all large primes p.

Since a is k-automatic, there are $\beta > \gamma$ with $a(k^\beta n + 1) = a(k^\gamma n + 1)$ for all $n \in \mathbb{N}_0$. Let Q be the product of all the primes $p < p_*$. Then

$$a(k^\beta Qn + 1)/a(k^\gamma Qn + 1) = 1.$$

By the theorem above, $a(p) = \chi(p)$ for large primes.
Dense case: large primes

Recall: We assume that \(a \) is dense: \(P_0 \) is finite, \(a(p^\alpha) \neq 0 \) if \(p \) is a large prime.

Proposition

There exists a threshold \(p_* \) such that

\[
a(p^\alpha) = a(p)^\alpha \neq 0 \quad \text{for all primes } p \geq p_* \text{ and all } \alpha \in \mathbb{N}.
\]

Once this is established, we follow in the footsteps of Klurman & Kurlberg (2019).

Theorem (Elliott & Kish (2017))

If \(a: \mathbb{N}_0 \rightarrow \mathbb{C} \) is a completely multiplicative, \(A, B, C, D \in \mathbb{N} \) with \(AD - BC \neq 0 \) and

\[
a(An + B)/a(Cn + D) = \text{const.} \neq 0, \quad (n \in \mathbb{N}_0)
\]

then there is a Dirichlet character \(\chi \) such that \(a(p) = \chi(p) \) for all large primes \(p \).

Since \(a \) is \(k \)-automatic, there are \(\beta > \gamma \) with \(a(k^\beta n + 1) = a(k^\gamma n + 1) \) for all \(n \in \mathbb{N}_0 \). Let \(Q \) be the product of all the primes \(p < p_* \). Then

\[
a(k^\beta Qn + 1)/a(k^\gamma Qn + 1) = 1.
\]

By the theorem above, \(a(p) = \chi(p) \) for large primes.
Dense case: large primes

Recall: We assume that \(a \) is dense: \(P_0 \) is finite, \(a(p^\alpha) \neq 0 \) if \(p \) is a large prime.

Proposition

There exists a threshold \(p_* \) such that

\[
a(p^\alpha) = a(p)^\alpha \neq 0 \quad \text{for all primes } p \geq p_* \text{ and all } \alpha \in \mathbb{N}. \tag{†}
\]

Once this is established, we follow in the footsteps of Klurman & Kurlberg (2019).

Theorem (Elliott & Kish (2017))

If \(a : \mathbb{N}_0 \to \mathbb{C} \) is a completely multiplicative, \(A, B, C, D \in \mathbb{N} \) with \(AD - BC \neq 0 \) and

\[
a(An + B)/a(Cn + D) = \text{const.} \neq 0, \quad (n \in \mathbb{N}_0)
\]

then there is a Dirichlet character \(\chi \) such that \(a(p) = \chi(p) \) for all large primes \(p \).

Since \(a \) is \(k \)-automatic, there are \(\beta > \gamma \) with \(a(k^\beta n + 1) = a(k^\gamma n + 1) \) for all \(n \in \mathbb{N}_0 \). Let \(Q \) be the product of all the primes \(p < p_* \). Then

\[
a(k^\beta Qn + 1)/a(k^\gamma Qn + 1) = 1.
\]

By the theorem above, \(a(p) = \chi(p) \) for large primes.
Dense case: Restoring complete multiplicativity

Claim: There is p_* such that $a(p^\alpha) = a(p)^\alpha$ for all primes $p \geq p_*$ and all $\alpha \in \mathbb{N}$.

- Define equivalence relation \sim of \mathbb{N}_0, where $n \sim n'$ if the base-k expansions $(n)_k, (n')_k$ “act in the same way” on the automaton that computes a:

$$\delta(\bullet, (n)_k) = \delta(\bullet, (n')_k) \quad \text{i.e.} \quad a(k^j + \ell x + k^j n + y) = a(k^j + \ell x + k^j n' + y)$$

for all $x, y, j, \ell \in \mathbb{N}_0$ with $y < k^j$ and $n, n' < k^\ell$. \rightarrow no overlaps in sums above

- Because a is automatic, the number of equivalence classes is finite: $|\mathbb{N}_0/\sim| < \infty$.

- Pick a large prime p and n, n' with $n \sim n'$, $pn \sim pn'$, $p \nmid n - n'$. \rightarrow pidgeonhole

- Aiming to show (†) $a(pm) = a(p)a(m)$ for many $m \in \mathbb{N}$.

- Pick m that “contains” n, that is, $m = k^j + \ell x + k^j n + y$. If $p \nmid m$ then (†) holds.

 - If $p \mid m$ (and ℓ is large) then $p \mid m' = k^j + \ell x + k^j n' + y$ so

 $$a(pm) = a\left(k^j + \ell (px) + k^j (pn) + (py)\right)$$

 $$= a\left(k^j + \ell (px) + k^j (pn') + (py)\right) = a(pm') = a(p)a(m') = a(p)a(m).$$

- Almost every m “contains” n, so (†) holds for almost every $m \in \mathbb{N}_0$.

- In particular, there is m with $a(m) \neq 0$, $\nu_p(m) = \alpha$, (†); so $a(p^{\alpha+1}) = a(p)a(p^{\alpha})$.
Dense case: Restoring complete multiplicativity

Claim: There is p_* such that $a(p^\alpha) = a(p)^\alpha$ for all primes $p \geq p_*$ and all $\alpha \in \mathbb{N}$.

- Define equivalence relation \sim of \mathbb{N}_0, where $n \sim n'$ if the base-k expansions $(n)_k, (n')_k$ “act in the same way” on the automaton that computes a:

 \[
 \delta(\bullet, (n)_k) = \delta(\bullet, (n')_k) \quad \text{i.e.} \quad a(k^j+\ell x + k^j n + y) = a(k^j+\ell x + k^j n' + y)
 \]

 for all $x, y, j, \ell \in \mathbb{N}_0$ with $y < k^j$ and $n, n' < k^\ell$. \(\rightarrow\) no overlaps in sums above

- Because a is automatic, the number of equivalence classes is finite: $|\mathbb{N}_0/\sim| < \infty$.

- Pick a large prime p and n, n' with $n \sim n'$, $pn \sim pn'$, $p \nmid n - n'$. \(\rightarrow\) pidgeonhole

- Aiming to show $(\dagger) a(pm) = a(p)a(m)$ for many $m \in \mathbb{N}$.

- Pick m that “contains” n, that is, $m = k^j+\ell x + k^j n + y$. If $p \nmid m$ then (\dagger) holds.

 If $p \mid m$ (and ℓ is large) then $p \mid m' = k^j+\ell x + k^j n' + y$ so

 \[
 a(pm) = a\left(k^j+\ell (px) + k^j (pn) + (py)\right) = a\left(k^j+\ell (px) + k^j (pn') + (py)\right) = a(pm') = a(p)a(m') = a(p)a(m).
 \]

- Almost every m “contains” n, so (\dagger) holds for almost every $m \in \mathbb{N}_0$.

- In particular, there is m with $a(m) \neq 0$, $\nu_p(m) = \alpha$, (\dagger); so $a(p^{\alpha+1}) = a(p)a(p^\alpha)$.

Dense case: Restoring complete multiplicativity

Claim: There is p_* such that $a(p^\alpha) = a(p)\alpha$ for all primes $p \geq p_*$ and all $\alpha \in \mathbb{N}$.

- Define equivalence relation \sim of \mathbb{N}_0, where $n \sim n'$ if the base-k expansions $(n)_k, (n')_k$ “act in the same way” on the automaton that computes a:

 $$\delta(\bullet, (n)_k) = \delta(\bullet, (n')_k) \quad \text{i.e.} \quad a(k^j + \ell x + k^j n + y) = a(k^j + \ell x + k^j n' + y)$$

 for all $x, y, j, \ell \in \mathbb{N}_0$ with $y < k^j$ and $n, n' < k^\ell$. \(\rightarrow\) no overlaps in sums above

- Because a is automatic, the number of equivalence classes is finite: $|\mathbb{N}_0/\sim| < \infty$.

- Pick a large prime p and n, n' with $n \sim n'$, $pn \sim pn'$, $p \nmid n - n'$.

- Aiming to show (†) $a(pm) = a(p)a(m)$ for many $m \in \mathbb{N}$.

- Pick m that “contains” n, that is, $m = k^j + \ell x + k^j n + y$. If $p \nmid m$ then (†) holds. If $p | m$ (and ℓ is large) then $p | m' = k^j + \ell x + k^j n' + y$ so

 $$a(pm) = a \left(k^j + \ell (px) + k^j (pn) + (py)\right)$$

 $$= a \left(k^j + \ell (px) + k^j (pn') + (py)\right) = a(pm') = a(p)a(m') = a(p)a(m).$$

- Almost every m “contains” n, so (†) holds for almost every $m \in \mathbb{N}_0$.

- In particular, there is m with $a(m) \neq 0$, $\nu_p(m) = \alpha$, (†); so $a(p^{\alpha+1}) = a(p)a(p^\alpha)$.
Dense case: Restoring complete multiplicativity

Claim: There is \(p_* \) such that \(a(p^\alpha) = a(p)^\alpha \) for all primes \(p \geq p_* \) and all \(\alpha \in \mathbb{N} \).

- Define equivalence relation \(\sim \) of \(\mathbb{N}_0 \), where \(n \sim n' \) if the base-\(k \) expansions \((n)_k, (n')_k \) “act in the same way” on the automaton that computes \(a \):
 \[
 \delta(\bullet, (n)_k) = \delta(\bullet, (n')_k) \quad \text{i.e.} \quad a(k^j + \ell x + k^j n + y) = a(k^j + \ell x + k^j n' + y)
 \]
 for all \(x, y, j, \ell \in \mathbb{N}_0 \) with \(y < k^j \) and \(n, n' < k^\ell \).

- Because \(a \) is automatic, the number of equivalence classes is finite: \(|\mathbb{N}_0/\sim| < \infty \).

- Pick a large prime \(p \) and \(n, n' \) with \(n \sim n' \), \(pn \sim pn' \), \(p \nmid n - n' \). \(\longrightarrow \) pigeonhole

- Aiming to show \((\dagger)\) \(a(pm) = a(p)a(m) \) for many \(m \in \mathbb{N} \).

- Pick \(m \) that “contains” \(n \), that is, \(m = k^j + \ell x + k^j n + y \). If \(p \nmid m \) then \((\dagger)\) holds. If \(p \mid m \) (and \(\ell \) is large) then \(p \mid m' = k^j + \ell x + k^j n' + y \) so
 \[
 a(pm) = a\left(k^j + \ell (px) + k^j (pn) + (py)\right)
 = a\left(k^j + \ell (px) + k^j (pn') + (py)\right) = a(pm') = a(p)a(m') = a(p)a(m).
 \]

- Almost every \(m \) “contains” \(n \), so \((\dagger)\) holds for almost every \(m \in \mathbb{N}_0 \).

- In particular, there is \(m \) with \(a(m) \neq 0 \), \(\nu_p(m) = \alpha \), \((\dagger)\); so \(a(p^{\alpha+1}) = a(p)a(p^\alpha) \).
Dense case: Restoring complete multiplicativity

Claim: There is \(p_\ast \) such that \(a(p^\alpha) = a(p)^\alpha \) for all primes \(p \geq p_\ast \) and all \(\alpha \in \mathbb{N} \).

- Define equivalence relation \(\sim \) of \(\mathbb{N}_0 \), where \(n \sim n' \) if the base-\(k \) expansions \((n)_k, (n')_k\) “act in the same way” on the automaton that computes \(a \):
 \[
 \delta(\bullet, (n)_k) = \delta(\bullet, (n')_k) \quad \text{i.e.} \quad a(k^j + \ell x + k^j n + y) = a(k^j + \ell x + k^j n' + y)
 \]
 for all \(x, y, j, \ell \in \mathbb{N}_0 \) with \(y < k^j \) and \(n, n' < k^\ell \). \(\rightarrow \) no overlaps in sums above
- Because \(a \) is automatic, the number of equivalence classes is finite: \(|\mathbb{N}_0/\sim| < \infty \).
- Pick a large prime \(p \) and \(n, n' \) with \(n \sim n' \), \(pn \sim pn' \), \(p \nmid n - n' \). \(\rightarrow \) pigeonhole
- Aiming to show \((\dagger)\) \(a(pm) = a(p)a(m) \) for many \(m \in \mathbb{N} \).
- Pick \(m \) that “contains” \(n \), that is, \(m = k^j + \ell x + k^j n + y \). If \(p \nmid m \) then \((\dagger)\) holds.
 If \(p \mid m \) (and \(\ell \) is large) then \(p \mid m' = k^j + \ell x + k^j n' + y \) so
 \[
 a(pm) = a(k^j + \ell (px) + k^j (pn) + (py)) = a(k^j + \ell (px) + k^j (pn') + (py)) = a(pm') = a(p)a(m') = a(p)a(m).
 \]
- Almost every \(m \) “contains” \(n \), so \((\dagger)\) holds for almost every \(m \in \mathbb{N}_0 \).
- In particular, there is \(m \) with \(a(m) \neq 0 \), \(\nu_p(m) = \alpha \), \((\dagger)\); so \(a(p^{\alpha + 1}) = a(p)a(p^\alpha) \).
Dense case: Restoring complete multiplicativity

Claim: There is p_* such that $a(p^\alpha) = a(p)^\alpha$ for all primes $p \geq p_*$ and all $\alpha \in \mathbb{N}$.

- Define equivalence relation \sim of \mathbb{N}_0, where $n \sim n'$ if the base-k expansions $(n)_k, (n')_k$ "act in the same way" on the automaton that computes a:

 $$\delta(\bullet, (n)_k) = \delta(\bullet, (n')_k) \quad \text{i.e.} \quad a(k^j + \ell x + k^j n + y) = a(k^j + \ell x + k^j n' + y)$$

 for all $x, y, j, \ell \in \mathbb{N}_0$ with $y < k^j$ and $n, n' < k^\ell$. \(\longrightarrow\) no overlaps in sums above

- Because a is automatic, the number of equivalence classes is finite: $|\mathbb{N}_0/\sim| < \infty$.

- Pick a large prime p and n, n' with $n \sim n'$, $pn \sim pn'$, $p \nmid n - n'$. \(\longrightarrow\) pigeonhole

- Aiming to show (†) $a(pm) = a(p)a(m)$ for many $m \in \mathbb{N}$.

 - Pick m that "contains" n, that is, $m = k^j + \ell x + k^j n + y$. If $p \nmid m$ then (†) holds. If $p \mid m$ (and ℓ is large) then $p \mid m' = k^j + \ell x + k^j n' + y$ so

 $$a(pm) = a\left(k^j + \ell (px) + k^j (pn) + (py)\right) = a\left(k^j + \ell (px) + k^j (pn') + (py)\right) = a(pm') = a(p)a(m') = a(p)a(m).$$

 - Almost every m "contains" n, so (†) holds for almost every $m \in \mathbb{N}_0$.

 - In particular, there is m with $a(m) \neq 0$, $\nu_p(m) = \alpha$, (†); so $a(p^{\alpha+1}) = a(p)a(p^\alpha)$. \(\leq 16 / 23\)
Dense case: Restoring complete multiplicativity

Claim: There is p_* such that $a(p^{\alpha}) = a(p)^{\alpha}$ for all primes $p \geq p_*$ and all $\alpha \in \mathbb{N}$.

- Define equivalence relation \sim of \mathbb{N}_0, where $n \sim n'$ if the base-k expansions $(n)_k, (n')_k$ “act in the same way” on the automaton that computes a:
 $$\delta(\bullet, (n)_k) = \delta(\bullet, (n')_k) \quad \text{i.e.} \quad a(k^{j+\ell}x + k^j n + y) = a(k^{j+\ell}x + k^j n' + y)$$
 for all $x, y, j, \ell \in \mathbb{N}_0$ with $y < k^j$ and $n, n' < k^\ell$. \(\rightarrow\) no overlaps in sums above

- Because a is automatic, the number of equivalence classes is finite: $|\mathbb{N}_0/\sim| < \infty$.

- Pick a large prime p and n, n' with $n \sim n'$, $pn \sim pn'$, $p \nmid n - n'$. \(\rightarrow\) pidgeonhole

- Aiming to show (†) $a(pm) = a(p)a(m)$ for many $m \in \mathbb{N}$.

- Pick m that “contains” n, that is, $m = k^{j+\ell}x + k^j n + y$. If $p \nmid m$ then (†) holds.
 If $p \mid m$ (and ℓ is large) then $p \mid m' = k^{j+\ell}x + k^j n' + y$ so
 $$a(pm) = a\left(k^{j+\ell}(px) + k^j(pn) + (py)\right) = a\left(k^{j+\ell}(px) + k^j(pn') + (py)\right) = a(pm') = a(p)a(m') = a(p)a(m).$$

- Almost every m “contains” n, so (†) holds for almost every $m \in \mathbb{N}_0$.

- In particular, there is m with $a(m) \neq 0$, $\nu_p(m) = \alpha$, (†); so $a(p^{\alpha+1}) = a(p) a(p^{\alpha})$.
Dense case: Restoring complete multiplicativity

Claim: There is p_* such that $a(p^{\alpha}) = a(p)^\alpha$ for all primes $p \geq p_*$ and all $\alpha \in \mathbb{N}$.

- Define equivalence relation \sim of \mathbb{N}_0, where $n \sim n'$ if the base-k expansions $(n)_k, (n')_k$ “act in the same way” on the automaton that computes a:

 $$\delta(\bullet, (n)_k) = \delta(\bullet, (n')_k) \quad \text{i.e.} \quad a(k^j + \ell x + k^j n + y) = a(k^j + \ell x + k^j n' + y)$$

 for all $x, y, j, \ell \in \mathbb{N}_0$ with $y < k^j$ and $n, n' < k^\ell$. \(\rightarrow\) no overlaps in sums above

- Because a is automatic, the number of equivalence classes is finite: $|\mathbb{N}_0/\sim| < \infty$.

- Pick a large prime p and n, n' with $n \sim n'$, $pn \sim pn'$, $p \nmid n - n'$. \(\rightarrow\) pigeonhole

- Aiming to show (\dagger) $a(pm) = a(p)a(m)$ for many $m \in \mathbb{N}$.

- Pick m that “contains” n, that is, $m = k^j + \ell x + k^j n + y$. If $p \nmid m$ then (\dagger) holds. If $p \mid m$ (and ℓ is large) then $p \mid m' = k^j + \ell x + k^j n' + y$ so

 $$a(pm) = a\left(k^j + \ell (px) + k^j (pn) + (py)\right) = a\left(k^j + \ell (px) + k^j (pn') + (py)\right) = a(pm') = a(p)a(m') = a(p)a(m).$$

- Almost every m “contains” n, so (\dagger) holds for almost every $m \in \mathbb{N}_0$.

- In particular, there is m with $a(m) \neq 0$, $\nu_p(m) = \alpha$, (\dagger); so $a(p^{\alpha+1}) = a(p)a(p^\alpha)$.
Dense case: Restoring complete multiplicativity

Claim: There is p_* such that $a(p^\alpha) = a(p)\alpha$ for all primes $p \geq p_*$ and all $\alpha \in \mathbb{N}$.

- Define equivalence relation \sim of \mathbb{N}_0, where $n \sim n'$ if the base-k expansions $(n)_k, (n')_k$ “act in the same way” on the automaton that computes a:
 \[\delta(\bullet, (n)_k) = \delta(\bullet, (n')_k) \quad \text{i.e.} \quad a(k^{j+\ell}x + k^j n + y) = a(k^{j+\ell}x + k^j n' + y) \]
 for all $x, y, j, \ell \in \mathbb{N}_0$ with $y < k^j$ and $n, n' < k^\ell$. \(\rightarrow\) no overlaps in sums above

- Because a is automatic, the number of equivalence classes is finite: $|\mathbb{N}_0/\sim| < \infty$.

- Pick a large prime p and n, n' with $n \sim n'$, $pn \sim pn'$, $p \nmid n - n'$. \(\rightarrow\) pidgeonhole

- Aiming to show $(\dagger) a(pm) = a(p)a(m)$ for many $m \in \mathbb{N}$.

- Pick m that “contains” n, that is, $m = k^{j+\ell}x + k^j n$. If $p \nmid m$ then (\dagger) holds. If $p \mid m$ (and ℓ is large) then $p \mid m' = k^{j+\ell}x + k^j n' + y$ so
 \[a(pm) = a\left(k^{j+\ell}(px) + k^j(pn) + (py)\right) = a\left(k^{j+\ell}(px) + k^j(pn') + (py)\right) = a(pm') = a(p)a(m') = a(p)a(m). \]

- Almost every m “contains” n, so (\dagger) holds for almost every $m \in \mathbb{N}_0$.

- In particular, there is m with $a(m) \neq 0$, $\nu_p(m) = \alpha$, (\dagger); so $a(p^{\alpha+1}) = a(p)a(p^\alpha)$.

\[\text{16 / 23}\]
Proposition

For each prime $p \not| k$, the sequence $a(p^\alpha)$ ($\alpha \in \mathbb{N}$) is eventually periodic.

Proof outline:

- Pick $n \sim n'$ such that $\Delta := n' - n$ is divisible by all small primes.

- For given prime p and $\alpha \in \mathbb{N}_0$, find a large prime q such that: $a(q) = \chi(q) = 1$ and the base-k expansion $(qp^\alpha)_k$ begins with $(n)_k$. \rightarrow PNT in arithm. prog.

- $a(p^\alpha) = a(qp^\alpha) = a(qp^\alpha + \Delta k^\beta)$ for appropriate $\beta \in \mathbb{N}_0$.

- Let $\delta = \nu_p(\Delta)$ and $\alpha > \delta$. Then $a(qp^\alpha + \Delta k^\beta) = a(qp^{\alpha-\delta} + \Delta k^\beta/p^\delta)a(p^\delta)$.

- Each small prime p' divides exactly one of the summands $qp^{\alpha-\delta}$, $\Delta k^\beta/p^\delta$, so the sum has no small factors and $a(qp^{\alpha-\delta} + \Delta k^\beta/p^\delta) = \chi(qp^{\alpha-\delta} + \Delta k^\beta/p^\delta)$.

- Nudging q slightly, may ensure that $\chi(qp^{\alpha-\delta} + \Delta k^\beta/p^\delta) = \chi(p^{\alpha-\delta} + \Delta/p^\delta)$.

- It follows that $a(p^\alpha) = a(p^\delta)\chi(p^{\alpha-\delta} + \Delta/p^\delta)$ is a periodic function of α.
Dense case: small primes

Proposition

For each prime $p \nmid k$, the sequence $a(p^\alpha)$ ($\alpha \in \mathbb{N}$) is eventually periodic.

Proof outline:

- Pick $n \sim n'$ such that $\Delta := n' - n$ is divisible by all small primes.
- For given prime p and $\alpha \in \mathbb{N}_0$, find a large prime q such that: $a(q) = \chi(q) = 1$ and the base-k expansion $(qp^\alpha)_k$ begins with $(n)_k$. \rightarrow PNT in arithm. prog.
- $a(p^\alpha) = a(qp^\alpha) = a(qp^\alpha + \Delta k^\beta)$ for appropriate $\beta \in \mathbb{N}_0$.
- Let $\delta = \nu_p(\Delta)$ and $\alpha > \delta$. Then $a(qp^\alpha + \Delta k^\beta) = a(qp^{\alpha-\delta} + \Delta k^\beta/p^\delta)a(p^\delta)$.
- Each small prime p' divides exactly one of the summands $qp^{\alpha-\delta}$, $\Delta k^\beta/p^\delta$, so the sum has no small factors and $a(qp^{\alpha-\delta} + \Delta k^\beta/p^\delta) = \chi(qp^{\alpha-\delta} + \Delta k^\beta/p^\delta)$.
- Nudging q slightly, may ensure that $\chi(qp^{\alpha-\delta} + \Delta k^\beta/p^\delta) = \chi(p^{\alpha-\delta} + \Delta/p^\delta)$.
- It follows that $a(p^\alpha) = a(p^\delta)\chi(p^{\alpha-\delta} + \Delta/p^\delta)$ is a periodic function of α.
Dense case: small primes

Proposition

For each prime \(p \nmid k \), the sequence \(a(p^\alpha) \ (\alpha \in \mathbb{N}) \) is eventually periodic.

Proof outline:

- Pick \(n \sim n' \) such that \(\Delta := n' - n \) is divisible by all small primes.

- For given prime \(p \) and \(\alpha \in \mathbb{N}_0 \), find a large prime \(q \) such that: \(a(q) = \chi(q) = 1 \) and the base-\(k \) expansion \((qp^\alpha)_k \) begins with \((n)_k \). \(\rightarrow \) PNT in arithm. prog.

- \(a(p^\alpha) = a(qp^\alpha) = a(qp^\alpha + \Delta k^\beta) \) for appropriate \(\beta \in \mathbb{N}_0 \).

- Let \(\delta = \nu_p(\Delta) \) and \(\alpha > \delta \). Then \(a(qp^\alpha + \Delta k^\beta) = a(qp^{\alpha-\delta} + \Delta k^\beta / p^\delta) a(p^\delta) \).

- Each small prime \(p' \) divides exactly one of the summands \(qp^{\alpha-\delta} \), \(\Delta k^\beta / p^\delta \), so the sum has no small factors and \(a(qp^{\alpha-\delta} + \Delta k^\beta / p^\delta) = \chi(qp^{\alpha-\delta} + \Delta k^\beta / p^\delta) \).

- Nudging \(q \) slightly, may ensure that \(\chi(qp^{\alpha-\delta} + \Delta k^\beta / p^\delta) = \chi(p^{\alpha-\delta} + \Delta / p^\delta) \).

- It follows that \(a(p^\alpha) = a(p^\delta) \chi(p^{\alpha-\delta} + \Delta / p^\delta) \) is a periodic function of \(\alpha \).
Dense case: small primes

Proposition

For each prime $p \nmid k$, the sequence $a(p^\alpha)$ ($\alpha \in \mathbb{N}$) is eventually periodic.

Proof outline:

- Pick $n \sim n'$ such that $\Delta := n' - n$ is divisible by all small primes.
- For given prime p and $\alpha \in \mathbb{N}_0$, find a large prime q such that: $a(q) = \chi(q) = 1$ and the base-k expansion $(qp^\alpha)_k$ begins with $(n)_k$. \rightarrow PNT in arithm. prog.
- $a(p^\alpha) = a(qp^\alpha) = a(qp^\alpha + \Delta k^\beta)$ for appropriate $\beta \in \mathbb{N}_0$.
- Let $\delta = \nu_p(\Delta)$ and $\alpha > \delta$. Then $a(qp^\alpha + \Delta k^\beta) = a(qp^{\alpha-\delta} + \Delta k^\beta / p^\delta) a(p^\delta)$.
- Each small prime p' divides exactly one of the summands $qp^{\alpha-\delta}$, $\Delta k^\beta / p^\delta$, so the sum has no small factors and $a(qp^{\alpha-\delta} + \Delta k^\beta / p^\delta) = \chi(qp^{\alpha-\delta} + \Delta k^\beta / p^\delta)$.
- Nudging q slightly, may ensure that $\chi(qp^{\alpha-\delta} + \Delta k^\beta / p^\delta) = \chi(p^{\alpha-\delta} + \Delta / p^\delta)$.
- It follows that $a(p^\alpha) = a(p^\delta) \chi(p^{\alpha-\delta} + \Delta / p^\delta)$ is a periodic function of α.
Dense case: small primes

Proposition

For each prime $p \nmid k$, the sequence $a(p^\alpha)$ ($\alpha \in \mathbb{N}$) is eventually periodic.

Proof outline:

- Pick $n \sim n'$ such that $\Delta := n' - n$ is divisible by all small primes.

- For given prime p and $\alpha \in \mathbb{N}_0$, find a large prime q such that: $a(q) = \chi(q) = 1$ and the base-k expansion $(qp^\alpha)_k$ begins with $(n)_k$. \rightarrow PNT in arithm. prog.

- $a(p^\alpha) = a(qp^\alpha) = a(qp^\alpha + \Delta k^\beta)$ for appropriate $\beta \in \mathbb{N}_0$.

- Let $\delta = \nu_p(\Delta)$ and $\alpha > \delta$. Then $a(qp^\alpha + \Delta k^\beta) = a(qp^{\alpha-\delta} + \Delta k^\beta / p^\delta) a(p^\delta)$.

- Each small prime p' divides exactly one of the summands $qp^{\alpha-\delta}$, $\Delta k^\beta / p^\delta$, so the sum has no small factors and $a(qp^{\alpha-\delta} + \Delta k^\beta / p^\delta) = \chi(qp^{\alpha-\delta} + \Delta k^\beta / p^\delta)$.

- Nudging q slightly, may ensure that $\chi(qp^{\alpha-\delta} + \Delta k^\beta / p^\delta) = \chi(p^{\alpha-\delta} + \Delta / p^\delta)$.

- It follows that $a(p^\alpha) = a(p^\delta) \chi(p^{\alpha-\delta} + \Delta / p^\delta)$ is a periodic function of α.
Dense case: small primes

Proposition

For each prime $p \nmid k$, the sequence $a(p^\alpha)$ ($\alpha \in \mathbb{N}$) is eventually periodic.

Proof outline:

- Pick $n \sim n'$ such that $\Delta := n' - n$ is divisible by all small primes.

- For given prime p and $\alpha \in \mathbb{N}_0$, find a large prime q such that: $a(q) = \chi(q) = 1$ and the base-k expansion $(qp^{\alpha})_k$ begins with $(n)_k$. \[\rightarrow\text{ PNT in arithm. prog.}\]

- $a(p^{\alpha}) = a(qp^{\alpha}) = a(qp^{\alpha} + \Delta k^{\beta})$ for appropriate $\beta \in \mathbb{N}_0$.

- Let $\delta = \nu_p(\Delta)$ and $\alpha > \delta$. Then $a(qp^{\alpha} + \Delta k^{\beta}) = a(qp^{\alpha-\delta} + \Delta k^{\beta}/p^{\delta})a(p^{\delta})$.

- Each small prime p' divides exactly one of the summands $qp^{\alpha-\delta}$, $\Delta k^{\beta}/p^{\delta}$, so the sum has no small factors and $a(qp^{\alpha-\delta} + \Delta k^{\beta}/p^{\delta}) = \chi(qp^{\alpha-\delta} + \Delta k^{\beta}/p^{\delta})$.

- Nudging q slightly, may ensure that $\chi(qp^{\alpha-\delta} + \Delta k^{\beta}/p^{\delta}) = \chi(p^{\alpha-\delta} + \Delta/p^{\delta})$.

- It follows that $a(p^{\alpha}) = a(p^{\delta})\chi(p^{\alpha-\delta} + \Delta/p^{\delta})$ is a periodic function of α.
Dense case: small primes

Proposition

For each prime \(p \nmid k \), the sequence \(a(p^\alpha) \) (\(\alpha \in \mathbb{N} \)) is eventually periodic.

Proof outline:

- Pick \(n \sim n' \) such that \(\Delta := n' - n \) is divisible by all small primes.

- For given prime \(p \) and \(\alpha \in \mathbb{N}_0 \), find a large prime \(q \) such that: \(a(q) = \chi(q) = 1 \) and the base-\(k \) expansion \((qp^\alpha)_k \) begins with \((n)_k \). \[\rightarrow \text{PNT in arithm. prog.} \]

- \(a(p^\alpha) = a(qp^\alpha) = a(qp^\alpha + \Delta k^\beta) \) for appropriate \(\beta \in \mathbb{N}_0 \).

- Let \(\delta = \nu_p(\Delta) \) and \(\alpha > \delta \). Then \(a(qp^\alpha + \Delta k^\beta) = a(qp^{\alpha-\delta} + \Delta k^\beta / p^\delta) a(p^\delta) \).

- Each small prime \(p' \) divides exactly one of the summands \(qp^{\alpha-\delta} \), \(\Delta k^\beta / p^\delta \), so the sum has no small factors and \(a(qp^{\alpha-\delta} + \Delta k^\beta / p^\delta) = \chi(qp^{\alpha-\delta} + \Delta k^\beta / p^\delta) \).

- Nudging \(q \) slightly, may ensure that \(\chi(qp^{\alpha-\delta} + \Delta k^\beta / p^\delta) = \chi(p^{\alpha-\delta} + \Delta / p^\delta) \).

- It follows that \(a(p^\alpha) = a(p^\delta) \chi(p^{\alpha-\delta} + \Delta / p^\delta) \) is a periodic function of \(\alpha \).
Dense case: small primes

Proposition

For each prime $p
mid k$, the sequence $a(p^\alpha) \ (\alpha \in \mathbb{N})$ is eventually periodic.

Proof outline:

- Pick $n \sim n'$ such that $\Delta := n' - n$ is divisible by all small primes.

- For given prime p and $\alpha \in \mathbb{N}_0$, find a large prime q such that: $a(q) = \chi(q) = 1$ and the base-k expansion $(qp^\alpha)_k$ begins with $(n)_k$. → PNT in arithm. prog.

- $a(p^\alpha) = a(qp^\alpha) = a(qp^\alpha + \Delta k^\beta)$ for appropriate $\beta \in \mathbb{N}_0$.

- Let $\delta = \nu_p(\Delta)$ and $\alpha > \delta$. Then $a(qp^\alpha + \Delta k^\beta) = a(qp^{\alpha-\delta} + \Delta k^\beta/p^\delta)a(p^\delta)$.

- Each small prime p' divides exactly one of the summands $qp^{\alpha-\delta}$, $\Delta k^\beta/p^\delta$, so the sum has no small factors and $a(qp^{\alpha-\delta} + \Delta k^\beta/p^\delta) = \chi(qp^{\alpha-\delta} + \Delta k^\beta/p^\delta)$.

- Nudging q slightly, may ensure that $\chi(qp^{\alpha-\delta} + \Delta k^\beta/p^\delta) = \chi(p^{\alpha-\delta} + \Delta/p^\delta)$.

- It follows that $a(p^\alpha) = a(p^\delta)\chi(p^{\alpha-\delta} + \Delta/p^\delta)$ is a periodic function of α.
Dense case: small primes

Proposition

For each prime \(p \nmid k \), the sequence \(a(p^\alpha) \) (\(\alpha \in \mathbb{N} \)) is eventually periodic.

Proof outline:

- Pick \(n \sim n' \) such that \(\Delta := n' - n \) is divisible by all small primes.

- For given prime \(p \) and \(\alpha \in \mathbb{N}_0 \), find a large prime \(q \) such that: \(a(q) = \chi(q) = 1 \) and the base-\(k \) expansion \((qp^\alpha)_k \) begins with \((n)_k \). \(\rightarrow \) PNT in arithm. prog.

- \(a(p^\alpha) = a(qp^\alpha) = a(qp^\alpha + \Delta k^\beta) \) for appropriate \(\beta \in \mathbb{N}_0 \).

- Let \(\delta = \nu_p(\Delta) \) and \(\alpha > \delta \). Then \(a(qp^\alpha + \Delta k^\beta) = a(qp^{\alpha-\delta} + \Delta k^\beta/p^\delta) a(p^\delta) \).

- Each small prime \(p' \) divides exactly one of the summands \(qp^{\alpha-\delta}, \Delta k^\beta/p^\delta \), so the sum has no small factors and \(a(qp^{\alpha-\delta} + \Delta k^\beta/p^\delta) = \chi(qp^{\alpha-\delta} + \Delta k^\beta/p^\delta) \).

- Nudging \(q \) slightly, may ensure that \(\chi(qp^{\alpha-\delta} + \Delta k^\beta/p^\delta) = \chi(p^{\alpha-\delta} + \Delta/p^\delta) \).

- It follows that \(a(p^\alpha) = a(p^\delta) \chi(p^{\alpha-\delta} + \Delta/p^\delta) \) is a periodic function of \(\alpha \).
Dense case: small primes

Proposition

For each prime $p \nmid k$, the sequence $a(p^\alpha)$ ($\alpha \in \mathbb{N}$) is eventually periodic.

Proof outline:

- Pick $n \sim n'$ such that $\Delta := n' - n$ is divisible by all small primes.

- For given prime p and $\alpha \in \mathbb{N}_0$, find a large prime q such that: $a(q) = \chi(q) = 1$ and the base-k expansion $(qp^\alpha)_k$ begins with $(n)_k$. \(\rightarrow\) PNT in arithm. prog.

- $a(p^\alpha) = a(qp^\alpha) = a(qp^\alpha + \Delta k^\beta)$ for appropriate $\beta \in \mathbb{N}_0$.

- Let $\delta = \nu_p(\Delta)$ and $\alpha > \delta$. Then $a(qp^\alpha + \Delta k^\beta) = a(qp^{\alpha - \delta} + \Delta k^\beta / p^\delta) a(p^\delta)$.

- Each small prime p' divides exactly one of the summands $qp^{\alpha - \delta}$, $\Delta k^\beta / p^\delta$, so the sum has no small factors and $a(qp^{\alpha - \delta} + \Delta k^\beta / p^\delta) = \chi(qp^{\alpha - \delta} + \Delta k^\beta / p^\delta)$.

- Nudging q slightly, may ensure that $\chi(qp^{\alpha - \delta} + \Delta k^\beta / p^\delta) = \chi(p^{\alpha - \delta} + \Delta / p^\delta)$.

- It follows that $a(p^\alpha) = a(p^\delta)\chi(p^{\alpha - \delta} + \Delta / p^\delta)$ is a periodic function of α.
Dense case: prime divisors of k

Fact: If k is a power of a prime p then $a(p^\alpha)$ is eventually periodic.

\rightarrow General fact about automatic sequences

Proposition

If k is not a prime power, and $p \mid k$ then $a(p^\alpha)$ is eventually periodic.

\rightarrow Same circle of ideas as on the previous slide

Story so far: We have a decomposition

$$a(n) = \left(\frac{\text{contribution from large primes}}{\text{contribution from small primes not dividing } k}\right) \times \left(\text{contributions from prime divisors of } k\right),$$

and we know that each component exhibits appropriate periodic behaviour: For each small prime p, the corresponding contribution is p-automatic.
Dense case: prime divisors of k

Fact: If k is a power of a prime p then $a(p^\alpha)$ is eventually periodic.

\rightarrow General fact about automatic sequences

Proposition

If k is not a prime power, and $p \mid k$ then $a(p^\alpha)$ is eventually periodic.

\rightarrow Same circle of ideas as on the previous slide

Story so far: We have a decomposition

$$ a(n) = \left(\text{contribution from large primes} \right) \times \left(\text{contributions from small primes not dividing } k \right) \times \left(\text{contributions from prime divisors of } k \right), $$

and we know that each component exhibits appropriate periodic behaviour: For each small prime p, the corresponding contribution is p-automatic.
Dense case: prime divisors of k

Fact: If k is a power of a prime p then $a(p^\alpha)$ is eventually periodic.

\longrightarrow General fact about automatic sequences

Proposition

If k is not a prime power, and $p | k$ then $a(p^\alpha)$ is eventually periodic.

\longrightarrow Same circle of ideas as on the previous slide

Story so far: We have a decomposition

$$a(n) = \left(\text{contribution from large primes}\right) \times \left(\text{contributions from small primes not dividing } k\right) \times \left(\text{contributions from prime divisors of } k\right),$$

and we know that each component exhibits appropriate periodic behaviour: For each small prime p, the corresponding contribution is p-automatic.
Dense case: prime divisors of k

Fact: If k is a power of a prime p then $a(p^\alpha)$ is eventually periodic.

→ General fact about automatic sequences

Proposition

If k is not a prime power, and $p \mid k$ then $a(p^\alpha)$ is eventually periodic.

→ Same circle of ideas as on the previous slide

Story so far: We have a decomposition

$$a(n) = \left(\text{contribution from large primes}\right) \times \left(\text{contributions from small primes not dividing } k\right) \times \left(\text{contributions from prime divisors of } k\right),$$

and we know that each component exhibits appropriate periodic behaviour: For each small prime p, the corresponding contribution is p-automatic.
Dense case: Cobham-like theorems

Theorem (Cobham (1969))

Let \((a(n))_{n=0}^\infty\) be a sequence that is both \(k\)- and \(\ell\)-automatic. Then

- the bases \(k\) and \(\ell\) are rational powers of each other \(\rightarrow k\text{-auto.} = \ell\text{-auto.}\)
- the sequence \(a\) is eventually periodic \(\rightarrow m\text{-automatic for all } m\)

Proposition

Let \(a\) be a primitive \(k\)-automatic sequence, and for \(1 \leq i \leq s\) let \(b_i\) be primitive \(\ell_i\)-automatic sequences. Suppose further that there exists a map \(F\) such that

\[a(n) = F(b_1(n), \ldots, b_s(n)). \]

and that \(k, \ell_1, \ldots, \ell_s\) are pairwise coprime. Then \(a\) is periodic.

But from the previous slide we have:

\[a(n) \underbrace{\text{\(k\)-automatic}}_{\text{(periodic)}} \times \prod_{p \nmid k} (p\text{-automatic}) \times \prod_{q \mid k} (q\text{-automatic}) \]

When \(k\) is a prime power, it follows that \(a(n) = a(p^{\nu_p(n)}) \times (\text{periodic})\).

When \(k\) is not a prime power — story for another time.
Dense case: Cobham-like theorems

Theorem (Cobham (1969))

Let \((a(n))_{n=0}^{\infty}\) be a sequence that is both \(k\)- and \(\ell\)-automatic. Then

- the bases \(k\) and \(\ell\) are rational powers of each other \(\rightarrow k\text{-auto.} = \ell\text{-auto.}\)
- the sequence \(a\) is eventually periodic \(\rightarrow m\text{-automatic for all } m\)

Proposition

Let \(a\) be a primitive \(k\)-automatic sequence, and for \(1 \leq i \leq s\) let \(b_i\) be primitive \(\ell_i\)-automatic sequences. Suppose further that there exists a map \(F\) such that

\[a(n) = F(b_1(n), \ldots, b_s(n)).\]

and that \(k, \ell_1, \ldots, \ell_s\) are pairwise coprime. Then \(a\) is periodic.

But from the previous slide we have:

\[a(n) = (\text{periodic}) \times \prod_{\substack{p | k \text{ small} \atop p \not| k}} (p\text{-automatic}) \times \prod_{q | k} (q\text{-automatic})\]

When \(k\) is a prime power, it follows that \(a(n) = a(p^{\nu_p(n)}) \times (\text{periodic})\).

When \(k\) is not a prime power — story for another time.
Dense case: Cobham-like theorems

Theorem (Cobham (1969))

Let \((a(n))_{n=0}^{\infty}\) be a sequence that is both \(k\)- and \(\ell\)-automatic. Then
- the bases \(k\) and \(\ell\) are rational powers of each other \(\rightarrow k\text{-auto.} = \ell\text{-auto.}\)
- the sequence \(a\) is eventually periodic \(\rightarrow m\text{-automatic for all } m\)

Proposition

Let \(a\) be a primitive \(k\)-automatic sequence, and for \(1 \leq i \leq s\) let \(b_i\) be primitive \(\ell_i\)-automatic sequences. Suppose further that there exists a map \(F\) such that

\[a(n) = F(b_1(n), \ldots, b_s(n)). \]

and that \(k, \ell_1, \ldots, \ell_s\) are pairwise coprime. Then \(a\) is periodic.

But from the previous slide we have:

\[a(n) = (\text{periodic}) \times \prod_{\substack{p \mid k \text{ small} \ p \mid k}} (p\text{-automatic}) \times \prod_{q \mid k} (q\text{-automatic}) \]

When \(k\) is a prime power, it follows that \(a(n) = a(p^{\nu_p(n)}) \times (\text{periodic})\).

When \(k\) is not a prime power — story for another time.
Dense case: Cobham-like theorems

Theorem (Cobham (1969))

Let \((a(n))_{n=0}^{\infty}\) be a sequence that is both \(k\)- and \(\ell\)-automatic. Then

- the bases \(k\) and \(\ell\) are rational powers of each other \(\rightarrow k\text{-auto.} = \ell\text{-auto.}\)
- the sequence \(a\) is eventually periodic \(\rightarrow m\text{-automatic for all } m\)

Proposition

Let \(a\) be a primitive \(k\)-automatic sequence, and for \(1 \leq i \leq s\) let \(b_i\) be primitive \(\ell_i\)-automatic sequences. Suppose further that there exists a map \(F\) such that

\[a(n) = F(b_1(n), \ldots, b_s(n)). \]

and that \(k, \ell_1, \ldots, \ell_s\) are pairwise coprime. Then \(a\) is periodic.

But from the previous slide we have:

\[a(n) \underbrace{=}_(\text{k-automatic}) \underbrace{=}_(\text{periodic}) \prod_{p \mid k} (p\text{-automatic}) \times \prod_{q \mid k} (q\text{-automatic}) \]

When \(k\) is a prime power, it follows that \(a(n) = a(p^{\nu_p(n)}) \times (\text{periodic})\).
When \(k\) is not a prime power — story for another time.
Automatic semigroups — motivation

Question

For a given \(k \in \mathbb{N}_{\geq 2} \), classify all \(E \subset \mathbb{N}_{0} \) that are simultaneously
- a \(k \)-automatic set \(\rightarrow 1_{E} \) is a \(k \)-automatic sequence
- a multiplicative semigroup \(\rightarrow n \cdot m \in E \) for all \(n,m \in E \)

Example: Let \(a : \mathbb{N}_{0} \to \mathbb{C} \) be an automatic completely multiplicative sequence. Then \(E := \{ n \in \mathbb{N}_{0} : a(n) = 1 \} \) is a semigroup. \(\rightarrow \) Morally: Classification of automatic semigroups implies classification of automatic completely multiplicative sequences.

Example: Let \(A \subset \mathbb{N}_{0} \) be any \(k \)-automatic set, \(m \in \mathbb{N}_{\geq 2} \). Then

\[
E = mA \cup m^{2}\mathbb{N}
\]

is trivially \(k \)-automatic semigroup: \(E \cdot E \subset (m\mathbb{N}) \cdot (m\mathbb{N}) \subset m^{2}\mathbb{N} \subset E \). \(\rightarrow \) No hope for a neat and complete classification without extra assumptions.
Automatic semigroups — motivation

Question

For a given $k \in \mathbb{N}_{\geq 2}$, classify all $E \subset \mathbb{N}_0$ that are simultaneously

- a k-automatic set
- a multiplicative semigroup

1_E is a k-automatic sequence

$n \cdot m \in E$ for all $n, m \in E$

Example: Let $a: \mathbb{N}_0 \to \mathbb{C}$ be an automatic completely multiplicative sequence. Then $E := \{n \in \mathbb{N}_0 : a(n) = 1\}$ is a semigroup. Morally: Classification of automatic semigroups implies classification of automatic completely multiplicative sequences.

Example: Let $A \subset \mathbb{N}_0$ be any k-automatic set, $m \in \mathbb{N}_{\geq 2}$. Then

$$E = mA \cup m^2 \mathbb{N}$$

is trivially k-automatic semigroup: $E \cdot E \subset (m\mathbb{N}) \cdot (m\mathbb{N}) \subset m^2 \mathbb{N} \subset E$.

No hope for a neat and complete classification without extra assumptions.
Automatic semigroups — motivation

Question

For a given $k \in \mathbb{N}_{\geq 2}$, classify all $E \subset \mathbb{N}_0$ that are simultaneously
- a k-automatic set
- a multiplicative semigroup

$\rightarrow 1_E$ is a k-automatic sequence

$\rightarrow n \cdot m \in E$ for all $n, m \in E$

Example: Let $a : \mathbb{N}_0 \rightarrow \mathbb{C}$ be an automatic completely multiplicative sequence. Then $E := \{n \in \mathbb{N}_0 : a(n) = 1\}$ is a semigroup. \rightarrow Morally: Classification of automatic semigroups implies classification of automatic completely multiplicative sequences.

Example: Let $A \subset \mathbb{N}_0$ be any k-automatic set, $m \in \mathbb{N}_{\geq 2}$. Then

$$E = mA \cup m^2\mathbb{N}$$

is trivially k-automatic semigroup: $E \cdot E \subset (m\mathbb{N}) \cdot (m\mathbb{N}) \subset m^2\mathbb{N} \subset E$. \rightarrow No hope for a neat and complete classification without extra assumptions.
Automatic semigroups — motivation

Question

For a given $k \in \mathbb{N}_{\geq 2}$, classify all $E \subseteq \mathbb{N}_0$ that are simultaneously

- a k-automatic set $\rightarrow 1_E$ is a k-automatic sequence
- a multiplicative semigroup $\rightarrow n \cdot m \in E$ for all $n, m \in E$

Example: Let $a : \mathbb{N}_0 \to \mathbb{C}$ be an automatic completely multiplicative sequence. Then $E := \{n \in \mathbb{N}_0 : a(n) = 1\}$ is a semigroup. \rightarrow Morally: Classification of automatic semigroups implies classification of automatic completely multiplicative sequences.

Example: Let $A \subset \mathbb{N}_0$ be any k-automatic set, $m \in \mathbb{N}_{\geq 2}$. Then

$$E = mA \cup m^2 \mathbb{N}$$

is trivially k-automatic semigroup: $E \cdot E \subseteq (m \mathbb{N}) \cdot (m \mathbb{N}) \subseteq m^2 \mathbb{N} \subseteq E$.

\rightarrow No hope for a neat and complete classification without extra assumptions.
Automatic semigroups — results

Problem: For given $k \in \mathbb{N}_{\geq 2}$, classify all $E \subset \mathbb{N}_0$ that are simultaneously

- a k-automatic set,
- a multiplicative semigroup.

$\rightarrow 1_E$ is a k-automatic sequence

$\rightarrow n \cdot m \in E$ for all $n, m \in E$

Theorem (K. & Klurman (upcoming))

Let $E \subset \mathbb{N}_0$ be a k-automatic semigroup, k not a perfect power.

- If $\bar{d}(E) = 0$ then E is a finite union of k-geometric progressions:

 $$E = \bigcup_{j=1}^{s} \{ k^{a_j \ell + c_j} : \ell \in \mathbb{N}_0 \} \text{ for some } s \in \mathbb{N}_0 \text{ and } a_j, c_j \in \mathbb{N}_0 \ (1 \leq j \leq s).$$

- If $\bar{d}(E) > 0$ and $n \perp k$ for all $n \in E$ then...

 - there exists $m \in E$ such that E/m is contained in a periodic semigroup \tilde{E} with $d(\tilde{E} \setminus (E/m)) = 0$;

 $\rightarrow E/m = \{ n \in \mathbb{N}_0 : mn \in E \}$

 - if additionally E contains an infinite pairwise coprime subset then E is contained in a periodic semigroup \tilde{E} and $\tilde{E} \setminus E$ is finite.

 $\rightarrow m = 1$

Remark: Using the above as a black box, we can obtain some further “trivial” generalizations (e.g. if k is a prime, we can drop the assumption that $n \perp k$ for all $n \in E.$) \rightarrow “A statement is trivial if its proof requires less space than its statement.”
Automatic semigroups — results

Problem: For given $k \in \mathbb{N}_{\geq 2}$, classify all $E \subset \mathbb{N}_0$ that are simultaneously

- a k-automatic set,
- a multiplicative semigroup.

$\rightarrow 1_E$ is a k-automatic sequence
$\rightarrow n \cdot m \in E$ for all $n, m \in E$

Theorem (K. & Klurman (upcoming))

Let $E \subset \mathbb{N}_0$ be a k-automatic semigroup, k not a perfect power.

- If $\overline{d}(E) = 0$ then E is a finite union of k-geometric progressions:
 $$E = \bigcup_{j=1}^{s} \{k^{a_j l + c_j} : l \in \mathbb{N}_0\}$$
 for some $s \in \mathbb{N}_0$ and $a_j, c_j \in \mathbb{N}_0$ ($1 \leq j \leq s$).

- If $\overline{d}(E) > 0$ and $n \perp k$ for all $n \in E$ then…
 - there exists $m \in E$ such that E/m is contained in a periodic semigroup \tilde{E}
 with $d(\tilde{E} \setminus (E/m)) = 0$;
 - if additionally E contains an infinite pairwise coprime subset then E is contained in a periodic semigroup \tilde{E} and $\tilde{E} \setminus E$ is finite.

$\rightarrow m = 1$

Remark: Using the above as a black box, we can obtain some further “trivial” generalizations (e.g. if k is a prime, we can drop the assumption that $n \perp k$ for all $n \in E$.)

\rightarrow “A statement is trivial if its proof requires less space than its statement.”
Automatic semigroups — results

Problem: For given \(k \in \mathbb{N}_{\geq 2} \), classify all \(E \subset \mathbb{N}_0 \) that are simultaneously

- a \(k \)-automatic set,
- a multiplicative semigroup.

\[\leadsto 1_E \text{ is a } k\text{-automatic sequence} \]
\[\leadsto n \cdot m \in E \text{ for all } n, m \in E \]

Theorem (K. & Klurman (upcoming))

Let \(E \subset \mathbb{N}_0 \) be a \(k \)-automatic semigroup, \(k \) not a perfect power.

- If \(\overline{d}(E) = 0 \) then \(E \) is a finite union of \(k \)-geometric progressions:
 \[
 E = \bigcup_{j=1}^{s} \{ k^{a_j \ell+c_j} : \ell \in \mathbb{N}_0 \} \text{ for some } s \in \mathbb{N}_0 \text{ and } a_j, c_j \in \mathbb{N}_0 \ (1 \leq j \leq s).
 \]

- If \(\overline{d}(E) > 0 \) and \(n \perp k \) for all \(n \in E \) then...

 1. there exists \(m \in E \) such that \(E/m \) is contained in a periodic semigroup \(\tilde{E} \) with \(d(\tilde{E} \setminus (E/m)) = 0 \);

 \[\leadsto E/m = \{ n \in \mathbb{N}_0 : mn \in E \} \]

 2. if additionally \(E \) contains an infinite pairwise coprime subset then \(E \) is contained in a periodic semigroup \(\tilde{E} \) and \(\tilde{E} \setminus E \) is finite.

\[\leadsto m = 1 \]

Remark: Using the above as a black box, we can obtain some further “trivial” generalizations (e.g. if \(k \) is a prime, we can drop the assumption that \(n \perp k \) for all \(n \in E \).) \[\leadsto \text{“A statement is trivial if its proof requires less space than its statement.”} \]
Automatic semigroups — results

Problem: For given $k \in \mathbb{N}_{\geq 2}$, classify all $E \subset \mathbb{N}_0$ that are simultaneously

- a k-automatic set,
- a multiplicative semigroup.

$\rightarrow 1_E$ is a k-automatic sequence

$\rightarrow n \cdot m \in E$ for all $n, m \in E$

Theorem (K. & Klurman (upcoming))

Let $E \subset \mathbb{N}_0$ be a k-automatic semigroup, k not a perfect power.

- If $\overline{d}(E) = 0$ then E is a finite union of k-geometric progressions:
 \[E = \bigcup_{j=1}^{s} \{ k^{a_j \ell + c_j} : \ell \in \mathbb{N}_0 \} \text{ for some } s \in \mathbb{N}_0 \text{ and } a_j, c_j \in \mathbb{N}_0 \ (1 \leq j \leq s). \]

- If $\overline{d}(E) > 0$ and $n \perp k$ for all $n \in E$ then...

 - there exists $m \in E$ such that E/m is contained in a periodic semigroup \tilde{E} with $d(\tilde{E} \setminus (E/m)) = 0$;
 \[E/m = \{ n \in \mathbb{N}_0 : mn \in E \} \]

 - if additionally E contains an infinite pairwise coprime subset then E is contained in a periodic semigroup \tilde{E} and $\tilde{E} \setminus E$ is finite.

$\rightarrow m = 1$

Remark: Using the above as a black box, we can obtain some further “trivial” generalizations (e.g. if k is a prime, we can drop the assumption that $n \perp k$ for all $n \in E.$) “A statement is trivial if its proof requires less space than its statement.”
Automatic semigroups — proof ideas

Standing assumptions: $E \subset \mathbb{N}_0$ is a k-automatic semigroup, $\overline{d}(E) > 0$, $n \perp k$ for all $n \in E$, E contains an infinite coprime set.

Proposition

Let $E \subset \mathbb{N}_0$ be a k-automatic set. If $q \in \mathbb{N}$ has no small prime factors (i.e. $p \mid q \Rightarrow p > p_0(E)$) then $d_{\log}(E/q) = d_{\log}(E)$. $\rightarrow E/q = \{n \in \mathbb{N}_0 : qn \in E\}$

Consequence: Since E is a semigroup, $E \subset E/q$ for all $q \in E$. If q has no small prime factors, it follows that $d_{\log}(E/q \triangle E) = 0$. $\rightarrow X \triangle Y = (X \setminus Y) \cup (Y \setminus X)$

Wishful thinking: Suppose that $E/q = E$ for all $q \in E$ with no small prime factors.

Consider the equivalence relation \sim on \mathbb{N}_0, where:

- $n \sim 0$ if n has a small prime factor; \rightarrow i.e. $\exists p < C \text{ s.t. } p \mid n$, C to be determined
- $n \sim m$ if $E/n = E/m$ and n, m have no small prime factors.

Then \sim is compatible with multiplication and induces a quotient map $\mathbb{N}_0 \rightarrow \mathbb{N}_0/\sim$.

Key observation: \mathbb{N}_0/\sim is not just any semigroup: it is a finite abelian 0-group (i.e., multiplicative group with added zero element). We can use previous results on multiplicative sequences to completely describe the map $\mathbb{N}_0 \rightarrow \mathbb{N}_0/\sim$ (cf. classification of finite abelian groups). Once we know \sim, we can reconstruct E.
Automatic semigroups — proof ideas

Standing assumptions: $E \subset \mathbb{N}_0$ is a k-automatic semigroup, $\overline{d}(E) > 0$, $n \perp k$ for all $n \in E$, E contains an infinite coprime set.

Proposition

Let $E \subset \mathbb{N}_0$ be a k-automatic set. If $q \in \mathbb{N}$ has no small prime factors (i.e. $p \mid q \Rightarrow p > p_0(E)$) then $d_{\log}(E/q) = d_{\log}(E)$. \quad \rightarrow E/q = \{n \in \mathbb{N}_0 : qn \in E\}

Consequence: Since E is a semigroup, $E \subset E/q$ for all $q \in E$. If q has no small prime factors, it follows that $d_{\log}(E/q \triangle E) = 0$. \quad \rightarrow X \triangle Y = (X \setminus Y) \cup (Y \setminus X)$

Wishful thinking: Suppose that $E/q = E$ for all $q \in E$ with no small prime factors. Consider the equivalence relation \sim on \mathbb{N}_0, where:

- $n \sim 0$ if n has a small prime factor; \quad \rightarrow \text{i.e. } \exists p < C \text{ s.t. } p \mid n, C \text{ to be determined}$
- $n \sim m$ if $E/n = E/m$ and n, m have no small prime factors.

Then \sim is compatible with multiplication and induces a quotient map $\mathbb{N}_0 \to \mathbb{N}_0/\sim$.

Key observation: \mathbb{N}_0/\sim is not just any semigroup: it is a finite abelian 0-group (i.e., multiplicative group with added zero element). We can use previous results on multiplicative sequences to completely describe the map map $\mathbb{N}_0 \to \mathbb{N}_0/\sim$ (cf. classification of finite abelian groups). Once we know \sim, we can reconstruct E.
Automatic semigroups — proof ideas

Standing assumptions: \(E \subseteq \mathbb{N}_0 \) is a \(k \)-automatic semigroup, \(\bar{d}(E) > 0 \), \(n \perp k \) for all \(n \in E \), \(E \) contains an infinite coprime set.

Proposition

Let \(E \subseteq \mathbb{N}_0 \) be a \(k \)-automatic set. If \(q \in \mathbb{N} \) has no small prime factors (i.e. \(p \mid q \Rightarrow p > p_0(E) \)) then \(d_{\log}(E/q) = d_{\log}(E) \). \(\rightarrow E/q = \{ n \in \mathbb{N}_0 : qn \in E \} \)

Consequence: Since \(E \) is a semigroup, \(E \subseteq E/q \) for all \(q \in E \). If \(q \) has no small prime factors, it follows that \(d_{\log}(E/q \triangle E) = 0 \). \(\rightarrow X \triangle Y = (X \setminus Y) \cup (Y \setminus X) \)

Wishful thinking: Suppose that \(E/q = E \) for all \(q \in E \) with no small prime factors. Consider the equivalence relation \(\sim \) on \(\mathbb{N}_0 \), where:

- \(n \sim 0 \) if \(n \) has a small prime factor; \(\rightarrow \) i.e. \(\exists p < C \) s.t. \(p \mid n \), \(C \) to be determined
- \(n \sim m \) if \(E/n = E/m \) and \(n, m \) have no small prime factors.

Then \(\sim \) is compatible with multiplication and induces a quotient map \(\mathbb{N}_0 \to \mathbb{N}_0/\sim \).

Key observation: \(\mathbb{N}_0/\sim \) is not just any semigroup: it is a finite abelian 0-group (i.e., multiplicative group with added zero element). We can use previous results on multiplicative sequences to completely describe the map \(\mathbb{N}_0 \to \mathbb{N}_0/\sim \) (cf. classification of finite abelian groups). Once we know \(\sim \), we can reconstruct \(E \).
Automatic semigroups — proof ideas

Standing assumptions: $E \subset \mathbb{N}_0$ is a k-automatic semigroup, $\overline{d}(E) > 0$, $n \perp k$ for all $n \in E$, E contains an infinite coprime set.

Proposition

Let $E \subset \mathbb{N}_0$ be a k-automatic set. If $q \in \mathbb{N}$ has no small prime factors (i.e. $p \mid q \Rightarrow p > p_0(E)$) then $d_{\log}(E/q) = d_{\log}(E)$. \quad \rightarrow \quad E/q = \{n \in \mathbb{N}_0 : qn \in E\}

Consequence: Since E is a semigroup, $E \subset E/q$ for all $q \in E$. If q has no small prime factors, it follows that $d_{\log}(E/q \triangle E) = 0$. \quad \rightarrow \quad X \triangle Y = (X \setminus Y) \cup (Y \setminus X)

Wishful thinking: Suppose that $E/q = E$ for all $q \in E$ with no small prime factors. Consider the equivalence relation \sim on \mathbb{N}_0, where:

- $n \sim 0$ if n has a small prime factor; \quad \rightarrow \quad i.e. \exists p < C \text{ s.t. } p \mid n$, C to be determined
- $n \sim m$ if $E/n = E/m$ and n, m have no small prime factors.

Then \sim is compatible with multiplication and induces a quotient map $\mathbb{N}_0 \to \mathbb{N}_0/\sim$.

Key observation: \mathbb{N}_0/\sim is not just any semigroup: it is a finite abelian 0-group (i.e., multiplicative group with added zero element). We can use previous results on multiplicative sequences to completely describe the map map $\mathbb{N}_0 \to \mathbb{N}_0/\sim$ (cf. classification of finite abelian groups). Once we know \sim, we can reconstruct E.
Automatic semigroups — proof ideas

Standing assumptions: $E \subseteq \mathbb{N}_0$ is a k-automatic semigroup, $\overline{d}(E) > 0$, $n \perp k$ for all $n \in E$, E contains an infinite coprime set.

Proposition

Let $E \subseteq \mathbb{N}_0$ be a k-automatic set. If $q \in \mathbb{N}$ has no small prime factors (i.e. $p \mid q \Rightarrow p > p_0(E)$) then $d_{\log}(E/q) = d_{\log}(E)$.

$\rightarrow E/q = \{n \in \mathbb{N}_0 : qn \in E\}$

Consequence: Since E is a semigroup, $E \subseteq E/q$ for all $q \in E$. If q has no small prime factors, it follows that $d_{\log}(E/q \triangle E) = 0$.

$\rightarrow X \triangle Y = (X \setminus Y) \cup (Y \setminus X)$

Wishful thinking: Suppose that $E/q = E$ for all $q \in E$ with no small prime factors.

Consider the equivalence relation \sim on \mathbb{N}_0, where:

- $n \sim 0$ if n has a small prime factor; \rightarrow i.e. $\exists p < C$ s.t. $p \mid n$, C to be determined
- $n \sim m$ if $E/n = E/m$ and n, m have no small prime factors.

Then \sim is compatible with multiplication and induces a quotient map $\mathbb{N}_0 \rightarrow \mathbb{N}_0/\sim$.

Key observation: \mathbb{N}_0/\sim is not just any semigroup: it is a finite abelian 0-group (i.e., multiplicative group with added zero element). We can use previous results on multiplicative sequences to completely describe the map $\mathbb{N}_0 \rightarrow \mathbb{N}_0/\sim$ (cf. classification of finite abelian groups). Once we know \sim, we can reconstruct E.
Automatic semigroups — proof ideas

Standing assumptions: $E \subset \mathbb{N}_0$ is a k-automatic semigroup, $\overline{d}(E) > 0$, $n \perp k$ for all $n \in E$, E contains an infinite coprime set.

Proposition

Let $E \subset \mathbb{N}_0$ be a k-automatic set. If $q \in \mathbb{N}$ has no small prime factors (i.e. $p \mid q \Rightarrow p > p_0(E)$) then $d_{\log}(E/q) = d_{\log}(E)$. $\implies E/q = \{n \in \mathbb{N}_0 : qn \in E\}$

Consequence: Since E is a semigroup, $E \subset E/q$ for all $q \in E$. If q has no small prime factors, it follows that $d_{\log}(E/q \triangle E) = 0$. $\implies X\triangle Y = (X \setminus Y) \cup (Y \setminus X)$

Wishful thinking: Suppose that $E/q = E$ for all $q \in E$ with no small prime factors.

Consider the equivalence relation \sim on \mathbb{N}_0, where:

- $n \sim 0$ if n has a small prime factor; \implies i.e. $\exists p < C$ s.t. $p \mid n$, C to be determined
- $n \sim m$ if $E/n = E/m$ and n, m have no small prime factors.

Then \sim is compatible with multiplication and induces a quotient map $\mathbb{N}_0 \to \mathbb{N}_0/\sim$.

Key observation: \mathbb{N}_0/\sim is not just any semigroup: it is a finite abelian 0-group (i.e., multiplicative group with added zero element). We can use previous results on multiplicative sequences to completely describe the map $\map \mathbb{N}_0 \to \mathbb{N}_0/\sim$ (cf. classification of finite abelian groups). Once we know \sim, we can reconstruct E.
Automatic semigroups — proof ideas

Standing assumptions: $E \subset \mathbb{N}_0$ is a k-automatic semigroup, $\bar{d}(E) > 0$, $n \perp k$ for all $n \in E$, E contains an infinite coprime set.

Proposition

Let $E \subset \mathbb{N}_0$ be a k-automatic set. If $q \in \mathbb{N}$ has no small prime factors (i.e. $p \mid q \Rightarrow p > p_0(E)$) then $d_{\log}(E/q) = d_{\log}(E)$. $\rightarrow E/q = \{n \in \mathbb{N}_0 : qn \in E\}$

Consequence: Since E is a semigroup, $E \subset E/q$ for all $q \in E$. If q has no small prime factors, it follows that $d_{\log}(E/q \triangle E) = 0$. $\rightarrow X \triangle Y = (X \setminus Y) \cup (Y \setminus X)$

Wishful thinking: Suppose that $E/q = E$ for all $q \in E$ with no small prime factors.

Consider the equivalence relation \sim on \mathbb{N}_0, where:

- $n \sim 0$ if n has a small prime factor; \rightarrow i.e. $\exists p < C$ s.t. $p \mid n$, C to be determined

- $n \sim m$ if $E/n = E/m$ and n, m have no small prime factors.

Then \sim is compatible with multiplication and induces a quotient map $\mathbb{N}_0 \rightarrow \mathbb{N}_0/\sim$.

Key observation: \mathbb{N}_0/\sim is not just any semigroup: it is a finite abelian 0-group (i.e., multiplicative group with added zero element). We can use previous results on multiplicative sequences to completely describe the map map $\mathbb{N}_0 \rightarrow \mathbb{N}_0/\sim$ (cf. classification of finite abelian groups). Once we know \sim, we can reconstruct E.
Thank you for your attention!